[Torch Dialect] Add canonicalize pattern for aten.is_floating_point (#2194)

* [Torch Dialect] Add canonicalize pattern for aten.is_floating_point

* implement as fold

* add lit test
pull/2198/head snapshot-20230607.862
Yuanqiang Liu 2023-06-07 17:05:31 +08:00 committed by GitHub
parent 816880774b
commit 5a7bf4e4cb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 34 additions and 21 deletions

View File

@ -6284,6 +6284,7 @@ def Torch_AtenIsFloatingPointOp : Torch_Op<"aten.is_floating_point", [
printDefaultTorchOp(printer, *this, 1, 1); printDefaultTorchOp(printer, *this, 1, 1);
} }
}]; }];
let hasFolder = 1;
} }
def Torch_AtenOnesOp : Torch_Op<"aten.ones", [ def Torch_AtenOnesOp : Torch_Op<"aten.ones", [

View File

@ -51,24 +51,6 @@ public:
}; };
} // namespace } // namespace
namespace {
class ConvertAtenIsFloatingPointOp
: public OpConversionPattern<AtenIsFloatingPointOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenIsFloatingPointOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto tensorType = op.getSelf().getType().cast<BaseTensorType>();
bool result =
tensorType.hasDtype() && tensorType.getDtype().isa<mlir::FloatType>();
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
op, BoolAttr::get(getContext(), result));
return success();
}
};
} // namespace
namespace { namespace {
class ConvertRuntimeAssertOp : public OpConversionPattern<RuntimeAssertOp> { class ConvertRuntimeAssertOp : public OpConversionPattern<RuntimeAssertOp> {
public: public:
@ -400,8 +382,6 @@ public:
RewritePatternSet patterns(context); RewritePatternSet patterns(context);
target.addIllegalOp<AtenDimOp>(); target.addIllegalOp<AtenDimOp>();
patterns.add<ConvertAtenDimOp>(typeConverter, context); patterns.add<ConvertAtenDimOp>(typeConverter, context);
target.addIllegalOp<AtenIsFloatingPointOp>();
patterns.add<ConvertAtenIsFloatingPointOp>(typeConverter, context);
target.addIllegalOp<RuntimeAssertOp>(); target.addIllegalOp<RuntimeAssertOp>();
patterns.add<ConvertRuntimeAssertOp>(typeConverter, context); patterns.add<ConvertRuntimeAssertOp>(typeConverter, context);
target.addIllegalOp<AtenNeIntOp, AtenEqIntOp, AtenGtIntOp, AtenGeIntOp>(); target.addIllegalOp<AtenNeIntOp, AtenEqIntOp, AtenGtIntOp, AtenGeIntOp>();

View File

@ -1860,6 +1860,22 @@ void Aten__Getitem__TOp::getCanonicalizationPatterns(
}); });
} }
//===----------------------------------------------------------------------===//
// AtenIsFloatingPointOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenIsFloatingPointOp::fold(FoldAdaptor adaptor) {
auto operandType = getSelf().getType().dyn_cast<BaseTensorType>();
if (!operandType)
return nullptr;
if (operandType.hasDtype()) {
bool isFloatType = operandType.getDtype().isa<mlir::FloatType>();
return IntegerAttr::get(IntegerType::get(getContext(), 1), isFloatType);
}
// doesn't has dtype
return nullptr;
}
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// AtenAddTOp // AtenAddTOp
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//

View File

@ -456,7 +456,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
emit("aten::dim : (Tensor) -> (int)", has_folder=True) emit("aten::dim : (Tensor) -> (int)", has_folder=True)
emit("aten::size : (Tensor) -> (int[])", has_canonicalizer=True) emit("aten::size : (Tensor) -> (int[])", has_canonicalizer=True)
emit("aten::Bool.Tensor : (Tensor) -> (bool)") emit("aten::Bool.Tensor : (Tensor) -> (bool)")
emit("aten::is_floating_point : (Tensor) -> (bool)") emit("aten::is_floating_point : (Tensor) -> (bool)", has_folder=True)
emit("aten::ones : (int[], int?, int?, Device?, bool?) -> (Tensor)") emit("aten::ones : (int[], int?, int?, Device?, bool?) -> (Tensor)")
emit("aten::new_ones : (Tensor, int[], int?, int?, Device?, bool?) -> (Tensor)") emit("aten::new_ones : (Tensor, int[], int?, int?, Device?, bool?) -> (Tensor)")
emit("aten::zeros : (int[], int?, int?, Device?, bool?) -> (Tensor)") emit("aten::zeros : (int[], int?, int?, Device?, bool?) -> (Tensor)")

View File

@ -21,6 +21,22 @@ func.func @torch.aten.__range_length$fold() -> (!torch.int, !torch.int, !torch.i
return %0, %1, %2, %3 : !torch.int, !torch.int, !torch.int, !torch.int return %0, %1, %2, %3 : !torch.int, !torch.int, !torch.int, !torch.int
} }
// CHECK-LABEL: func.func @torch.aten.is_floating_point$fold_true
// CHECK: %[[TRUE:.*]] = torch.constant.bool true
// CHECK: return %[[TRUE]] : !torch.bool
func.func @torch.aten.is_floating_point$fold_true(%arg0: !torch.vtensor<[], f32>) -> !torch.bool {
%0 = torch.aten.is_floating_point %arg0 : !torch.vtensor<[], f32> -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.is_floating_point$fold_false
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool
func.func @torch.aten.is_floating_point$fold_false(%arg0: !torch.vtensor<[], si64>) -> !torch.bool {
%0 = torch.aten.is_floating_point %arg0 : !torch.vtensor<[], si64> -> !torch.bool
return %0 : !torch.bool
}
// CHECK-LABEL: func.func @torch.aten.__is__ // CHECK-LABEL: func.func @torch.aten.__is__
// CHECK: %[[FALSE:.*]] = torch.constant.bool false // CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: return %[[FALSE]] : !torch.bool // CHECK: return %[[FALSE]] : !torch.bool