mirror of https://github.com/llvm/torch-mlir
parent
2ce47dc8e4
commit
5ff823ace9
|
@ -360,3 +360,21 @@ class ElementwiseLogModule(torch.nn.Module):
|
|||
@register_test_case(module_factory=lambda: ElementwiseLogModule())
|
||||
def ElementwiseLogModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4))
|
||||
|
||||
|
||||
class ElementwiseSqrtModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
])
|
||||
|
||||
def forward(self, a):
|
||||
return torch.sqrt(a)
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseSqrtModule())
|
||||
def ElementwiseSqrtModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4))
|
||||
|
|
|
@ -2700,3 +2700,17 @@ def Torch_AtenEqDeviceOp : Torch_Op<"aten.eq.device", [
|
|||
let assemblyFormat = "$a `,` $b attr-dict `:` type($a) `,` type($b) `->` type($result)";
|
||||
}
|
||||
|
||||
def Torch_AtenSqrtOp : Torch_Op<"aten.sqrt", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics
|
||||
]> {
|
||||
let summary = "Generated op for `aten::sqrt : (Tensor) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$a
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let assemblyFormat = "$a `,` attr-dict `:` type($a) `->` type($result)";
|
||||
}
|
||||
|
||||
|
|
|
@ -1280,6 +1280,8 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
|
|||
return b.create<math::ExpOp>(loc, payloadArgs[0]);
|
||||
if (isa<AtenLogOp>(op))
|
||||
return b.create<math::LogOp>(loc, payloadArgs[0]);
|
||||
if (isa<AtenSqrtOp>(op))
|
||||
return b.create<math::SqrtOp>(loc, payloadArgs[0]);
|
||||
if (isa<AtenSigmoidOp>(op)) {
|
||||
Type elementType = payloadArgs[0].getType();
|
||||
auto one = b.create<arith::ConstantOp>(loc, FloatAttr::get(elementType, 1));
|
||||
|
@ -1663,7 +1665,8 @@ struct ConvertElementwiseOp : ConversionPattern {
|
|||
if (!isa<AtenTanhOp, AtenReluOp, AtenGeluOp, AtenAddTensorOp,
|
||||
AtenMulTensorOp, AtenDivTensorOp, AtenSubTensorOp,
|
||||
AtenLerpTensorOp, AtenSigmoidOp, AtenExpOp, AtenMinimumOp,
|
||||
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp>(op))
|
||||
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
|
||||
AtenSqrtOp>(op))
|
||||
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
|
||||
|
||||
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
||||
|
@ -2799,7 +2802,8 @@ public:
|
|||
target.addIllegalOp<AtenTanhOp, AtenReluOp, AtenGeluOp, AtenAddTensorOp,
|
||||
AtenMulTensorOp, AtenDivTensorOp, AtenSubTensorOp,
|
||||
AtenLerpTensorOp, AtenSigmoidOp, AtenMinimumOp,
|
||||
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp>();
|
||||
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
|
||||
AtenSqrtOp>();
|
||||
patterns.add<ConvertElementwiseOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenUnsqueezeOp>();
|
||||
patterns.add<ConvertAtenUnsqueezeOp>(typeConverter, context);
|
||||
|
|
|
@ -230,7 +230,8 @@ public:
|
|||
DerefineOp, AtenToPrimDeviceOp, AtenCpuOp, AtenContiguousOp,
|
||||
AtenFill_ScalarOp, AtenDetachOp, AtenMaskedFill_ScalarOp,
|
||||
AtenCopy_Op, AtenIndexPut_Op, AtenCopy_Op, AtenCumsumOp,
|
||||
AtenLayerNormOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp>(op)) {
|
||||
AtenLayerNormOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
|
||||
AtenSqrtOp>(op)) {
|
||||
return getLatticeElement(op->getResult(0)).join(*operands[0]);
|
||||
}
|
||||
|
||||
|
|
|
@ -508,6 +508,7 @@ def emit_aten_ops(torch_ir_dir: str, registry: Registry):
|
|||
emit("aten::logsumexp : (Tensor, int[], bool) -> (Tensor)")
|
||||
emit("aten::mean.dim : (Tensor, int[], bool, int?) -> (Tensor)")
|
||||
emit("aten::__and__.Tensor : (Tensor, Tensor) -> (Tensor)")
|
||||
emit("aten::sqrt : (Tensor) -> (Tensor)")
|
||||
|
||||
# Misc tensor ops.
|
||||
emit("aten::unsqueeze : (Tensor, int) -> (Tensor)")
|
||||
|
|
Loading…
Reference in New Issue