mirror of https://github.com/llvm/torch-mlir
parent
7a77f9fe3d
commit
72e422b589
|
@ -50,6 +50,32 @@ MHLO_PASS_SET = {
|
||||||
"ElementwiseUnaryModule_basic",
|
"ElementwiseUnaryModule_basic",
|
||||||
"ElementwiseUnsqueezeNegDimsModule_basic",
|
"ElementwiseUnsqueezeNegDimsModule_basic",
|
||||||
"ElementwiseToDtypeF32ToI64Module_basic",
|
"ElementwiseToDtypeF32ToI64Module_basic",
|
||||||
|
"ElementwiseAddModule_basic",
|
||||||
|
"ElementwiseAddScalarFloatModule_basic",
|
||||||
|
"ElementwiseAddScalarInt64Module_basic",
|
||||||
|
"ElementwiseAddScalarIntModule_basic",
|
||||||
|
"ElementwiseDivScalarModule_basic",
|
||||||
|
"ElementwiseEqDiffWidthScalarModule_basic",
|
||||||
|
"ElementwiseEqFloatScalarModule_basic",
|
||||||
|
"ElementwiseEqIntScalarModule_basic",
|
||||||
|
"ElementwiseErfModule_basic",
|
||||||
|
"ElementwiseGeluModule_basic",
|
||||||
|
"ElementwiseGtFloatScalarModule_basic",
|
||||||
|
"ElementwiseGtIntScalarModule_basic",
|
||||||
|
"ElementwiseGtMixed2ScalarModule_basic",
|
||||||
|
"ElementwiseLtDiffWidthScalarModule_basic",
|
||||||
|
"ElementwiseLtFloatScalarModule_basic",
|
||||||
|
"ElementwiseLtIntScalarModule_basic",
|
||||||
|
"ElementwiseMulScalarModule_basic",
|
||||||
|
"ElementwiseMulScalarModule_float",
|
||||||
|
"ElementwiseMulScalarModule_int",
|
||||||
|
"ElementwiseNeFloatTensorModule_basic",
|
||||||
|
"ElementwiseNeIntScalarModule_basic",
|
||||||
|
"ElementwiseReciprocalModule_basic",
|
||||||
|
"ElementwiseRelu6Module_basic",
|
||||||
|
"ElementwiseReluModule_basic",
|
||||||
|
"ElementwiseSubScalarFloatModule_basic",
|
||||||
|
"ElementwiseSubScalarIntModule_basic",
|
||||||
"ExpandAsIntModule_basic",
|
"ExpandAsIntModule_basic",
|
||||||
"ExpandModule_basic",
|
"ExpandModule_basic",
|
||||||
"FullLikeModuleDefaultDtype_basic",
|
"FullLikeModuleDefaultDtype_basic",
|
||||||
|
|
|
@ -158,6 +158,51 @@ def Torch_AtenRelu_Op : Torch_Op<"aten.relu_", [
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_AtenRelu6Op : Torch_Op<"aten.relu6", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics,
|
||||||
|
ReadOnly
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::relu6 : (Tensor) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenRelu6Op::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 1, 1);
|
||||||
|
}
|
||||||
|
void AtenRelu6Op::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 1, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
|
def Torch_AtenRelu6_Op : Torch_Op<"aten.relu6_", [
|
||||||
|
IsTrailingUnderscoreInplaceVariant,
|
||||||
|
AllowsTypeRefinement
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::relu6_ : (Tensor) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenRelu6_Op::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 1, 1);
|
||||||
|
}
|
||||||
|
void AtenRelu6_Op::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 1, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_AtenLeakyReluOp : Torch_Op<"aten.leaky_relu", [
|
def Torch_AtenLeakyReluOp : Torch_Op<"aten.leaky_relu", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics,
|
HasValueSemantics,
|
||||||
|
|
|
@ -184,6 +184,41 @@ public:
|
||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
|
// The binary broadcast patterns
|
||||||
|
namespace {
|
||||||
|
template <typename AtenOpT, typename ChloOpT>
|
||||||
|
class ConvertAtenBinaryBroadcastOp : public OpConversionPattern<AtenOpT> {
|
||||||
|
public:
|
||||||
|
using OpConversionPattern<AtenOpT>::OpConversionPattern;
|
||||||
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
||||||
|
LogicalResult
|
||||||
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
||||||
|
ConversionPatternRewriter &rewriter) const override {
|
||||||
|
Value lhs = adaptor.self();
|
||||||
|
auto lhsTy = lhs.getType().cast<TensorType>();
|
||||||
|
Value rhs = adaptor.other();
|
||||||
|
auto rhsTy = rhs.getType().cast<TensorType>();
|
||||||
|
|
||||||
|
if (!lhsTy || !rhsTy)
|
||||||
|
return op.emitError("only Tensor types supported");
|
||||||
|
|
||||||
|
auto lhsElemTy = lhsTy.getElementType();
|
||||||
|
auto rhsElemTy = rhsTy.getElementType();
|
||||||
|
|
||||||
|
if (lhsElemTy != rhsElemTy)
|
||||||
|
return op.emitError("input data types mismatched");
|
||||||
|
|
||||||
|
rewriter.replaceOpWithNewOp<ChloOpT>(
|
||||||
|
op,
|
||||||
|
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
|
||||||
|
op.getType()),
|
||||||
|
lhs, rhs,
|
||||||
|
/*broadcast_attr*/ nullptr);
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
// These binary op legalizations are specific to add/sub which have an
|
// These binary op legalizations are specific to add/sub which have an
|
||||||
// alpha multiplier.
|
// alpha multiplier.
|
||||||
namespace {
|
namespace {
|
||||||
|
@ -1231,4 +1266,13 @@ void mlir::torch::torch_to_mhlo::populateBasicOpPatternsAndLegality(
|
||||||
INSERT_ATENOP_PATTERN(AtenSizeIntOp);
|
INSERT_ATENOP_PATTERN(AtenSizeIntOp);
|
||||||
INSERT_ATENOP_PATTERN(AtenToDtypeOp);
|
INSERT_ATENOP_PATTERN(AtenToDtypeOp);
|
||||||
#undef INSERT_ATENOP_PATTERN
|
#undef INSERT_ATENOP_PATTERN
|
||||||
|
|
||||||
|
#define INSERT_BINARY_BROADCAST_PATTERN(AtenOp, MhloOp) \
|
||||||
|
target.addIllegalOp<AtenOp>(); \
|
||||||
|
patterns.add<ConvertAtenBinaryBroadcastOp<AtenOp, MhloOp>>(typeConverter, \
|
||||||
|
context)
|
||||||
|
INSERT_BINARY_BROADCAST_PATTERN(AtenMaximumOp, chlo::BroadcastMaxOp);
|
||||||
|
INSERT_BINARY_BROADCAST_PATTERN(AtenMinimumOp, chlo::BroadcastMinOp);
|
||||||
|
INSERT_BINARY_BROADCAST_PATTERN(Aten__And__TensorOp, chlo::BroadcastAndOp);
|
||||||
|
#undef INSERT_BINARY_BROADCAST_PATTERN
|
||||||
}
|
}
|
||||||
|
|
|
@ -645,6 +645,20 @@ static Value getRelu6Results(PatternRewriter &rewriter, Location loc,
|
||||||
return relu6Out;
|
return relu6Out;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
class DecomposeAtenRelu6Op : public OpRewritePattern<AtenRelu6Op> {
|
||||||
|
public:
|
||||||
|
using OpRewritePattern::OpRewritePattern;
|
||||||
|
LogicalResult matchAndRewrite(AtenRelu6Op op,
|
||||||
|
PatternRewriter &rewriter) const override {
|
||||||
|
Location loc = op.getLoc();
|
||||||
|
Value relu6 = getRelu6Results(rewriter, loc, op.self());
|
||||||
|
rewriter.replaceOp(op, relu6);
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
// Hardswish(x) = x * Relu6(x+3)/6
|
// Hardswish(x) = x * Relu6(x+3)/6
|
||||||
namespace {
|
namespace {
|
||||||
class DecomposeAtenHardswishOp : public OpRewritePattern<AtenHardswishOp> {
|
class DecomposeAtenHardswishOp : public OpRewritePattern<AtenHardswishOp> {
|
||||||
|
@ -2907,6 +2921,8 @@ public:
|
||||||
target.addIllegalOp<AtenRandLikeOp>();
|
target.addIllegalOp<AtenRandLikeOp>();
|
||||||
patterns.add<DecomposeAtenHardsigmoidOp>(context);
|
patterns.add<DecomposeAtenHardsigmoidOp>(context);
|
||||||
target.addIllegalOp<AtenHardsigmoidOp>();
|
target.addIllegalOp<AtenHardsigmoidOp>();
|
||||||
|
patterns.add<DecomposeAtenRelu6Op>(context);
|
||||||
|
target.addIllegalOp<AtenRelu6Op>();
|
||||||
patterns.add<DecomposeAtenHardswishOp>(context);
|
patterns.add<DecomposeAtenHardswishOp>(context);
|
||||||
target.addIllegalOp<AtenHardswishOp>();
|
target.addIllegalOp<AtenHardswishOp>();
|
||||||
patterns.add<DecomposeAtenSoftplusOp>(context);
|
patterns.add<DecomposeAtenSoftplusOp>(context);
|
||||||
|
|
|
@ -677,7 +677,7 @@ void TypeAnalysis::visitOperation(Operation *op,
|
||||||
|
|
||||||
// Take dtype from first operand.
|
// Take dtype from first operand.
|
||||||
if (isa<CopyToValueTensorOp, CopyToNonValueTensorOp, AtenBatchNormOp,
|
if (isa<CopyToValueTensorOp, CopyToNonValueTensorOp, AtenBatchNormOp,
|
||||||
AtenReluOp, AtenGeluOp, AtenCeilOp, AtenGeluBackwardOp,
|
AtenReluOp, AtenRelu6Op, AtenGeluOp, AtenCeilOp, AtenGeluBackwardOp,
|
||||||
AtenBitwiseNotOp, AtenToPrimDeviceOp, AtenCpuOp, AtenContiguousOp,
|
AtenBitwiseNotOp, AtenToPrimDeviceOp, AtenCpuOp, AtenContiguousOp,
|
||||||
AtenFill_ScalarOp, AtenDetachOp, AtenMaskedFill_ScalarOp, AtenCopy_Op,
|
AtenFill_ScalarOp, AtenDetachOp, AtenMaskedFill_ScalarOp, AtenCopy_Op,
|
||||||
AtenCumsumOp, AtenLayerNormOp, AtenClampOp, AtenClampMinOp,
|
AtenCumsumOp, AtenLayerNormOp, AtenClampOp, AtenClampMinOp,
|
||||||
|
|
|
@ -6402,6 +6402,10 @@ StringRef mlir::torch::Torch::getShapeLibrary() {
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_shape_fn.aten.relu6\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||||
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
|
" return %0 : !torch.list<int>\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_shape_fn.aten._softmax\"(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.bool) -> !torch.list<int> {\n"
|
" func.func @\"__torch_mlir_shape_fn.aten._softmax\"(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.bool) -> !torch.list<int> {\n"
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
|
|
|
@ -12,6 +12,7 @@
|
||||||
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
|
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
|
||||||
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
||||||
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
||||||
|
#include "mlir/Dialect/Shape/IR/Shape.h"
|
||||||
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
||||||
#include "mlir/IR/BuiltinOps.h"
|
#include "mlir/IR/BuiltinOps.h"
|
||||||
#include "mlir/IR/OpDefinition.h"
|
#include "mlir/IR/OpDefinition.h"
|
||||||
|
@ -45,9 +46,10 @@ class VerifyMhloBackendContractPass
|
||||||
ConversionTarget target(*context);
|
ConversionTarget target(*context);
|
||||||
|
|
||||||
// Structural operations.
|
// Structural operations.
|
||||||
target.addDynamicallyLegalOp<ModuleOp, func::FuncOp, func::ReturnOp>(
|
target.addDynamicallyLegalOp<ModuleOp, func::FuncOp, func::ReturnOp>(opHasLegalTypes);
|
||||||
opHasLegalTypes);
|
// Shape operations.
|
||||||
// Basic scalar operations.
|
target.addDynamicallyLegalOp<shape::ShapeOfOp>(opHasLegalTypes);
|
||||||
|
|
||||||
target.addLegalDialect<mhlo::MhloDialect>();
|
target.addLegalDialect<mhlo::MhloDialect>();
|
||||||
target.addLegalDialect<chlo::ChloDialect>();
|
target.addLegalDialect<chlo::ChloDialect>();
|
||||||
target.addLegalDialect<tensor::TensorDialect>();
|
target.addLegalDialect<tensor::TensorDialect>();
|
||||||
|
|
|
@ -397,6 +397,9 @@ def aten〇log(self: List[int]) -> List[int]:
|
||||||
def aten〇relu(self: List[int]) -> List[int]:
|
def aten〇relu(self: List[int]) -> List[int]:
|
||||||
return upstream_shape_functions.unary(self)
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
|
def aten〇relu6(self: List[int]) -> List[int]:
|
||||||
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
def aten〇_softmax(self: List[int], dim: int, half_to_float: bool) -> List[int]:
|
def aten〇_softmax(self: List[int], dim: int, half_to_float: bool) -> List[int]:
|
||||||
return upstream_shape_functions.unary(self)
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
|
|
|
@ -241,6 +241,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
||||||
"aten::tanh : (Tensor) -> (Tensor)",
|
"aten::tanh : (Tensor) -> (Tensor)",
|
||||||
"aten::hardtanh : (Tensor, Scalar, Scalar) -> (Tensor)",
|
"aten::hardtanh : (Tensor, Scalar, Scalar) -> (Tensor)",
|
||||||
"aten::relu : (Tensor) -> (Tensor)",
|
"aten::relu : (Tensor) -> (Tensor)",
|
||||||
|
"aten::relu6 : (Tensor) -> (Tensor)",
|
||||||
"aten::leaky_relu : (Tensor, Scalar) -> (Tensor)",
|
"aten::leaky_relu : (Tensor, Scalar) -> (Tensor)",
|
||||||
"aten::log : (Tensor) -> (Tensor)",
|
"aten::log : (Tensor) -> (Tensor)",
|
||||||
"aten::sigmoid : (Tensor) -> (Tensor)",
|
"aten::sigmoid : (Tensor) -> (Tensor)",
|
||||||
|
|
|
@ -345,6 +345,28 @@ def ElementwiseReluModule_basic(module, tu: TestUtils):
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class ElementwiseRelu6Module(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.ops.aten.relu6(x)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ElementwiseRelu6Module())
|
||||||
|
def ElementwiseRelu6Module_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(4, 2) - 0.5)
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
class ElementwiseLeakyReluModule(torch.nn.Module):
|
class ElementwiseLeakyReluModule(torch.nn.Module):
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
|
Loading…
Reference in New Issue