[onnx] Fix `onnx.split` by directly handling slicing (#3194)

Previous implementation erroneously mixed up num_outputs with
slice_size. New version correctly computs the slice size and directly
performs slicing rather than leveraging `aten.split.tensor`. This is due
to `onnx` supporting a fixed number of splits making the size
computation more easily computeable when lowering to `aten` rather than
deferring to `aten.split.tensor`.

---------

Co-authored-by: Robert Suderman <rsuderman@Roberts-MacBook-Pro.local>
pull/3199/head
Rob Suderman 2024-04-21 09:31:56 -07:00 committed by GitHub
parent b6b01602d3
commit 733cace1df
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 60 additions and 37 deletions

View File

@ -1379,7 +1379,7 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
"Split", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { "Split", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Value self; Value self;
int64_t axis; int64_t axis;
int64_t num_outputs; int64_t numOutputs;
if (binder.tensorOperand(self)) if (binder.tensorOperand(self))
return rewriter.notifyMatchFailure( return rewriter.notifyMatchFailure(
binder.op, "Not converting to AtenSplitTensorOp due to input " binder.op, "Not converting to AtenSplitTensorOp due to input "
@ -1387,49 +1387,65 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
if (binder.s64IntegerAttr(axis, "axis", 0)) if (binder.s64IntegerAttr(axis, "axis", 0))
return rewriter.notifyMatchFailure(binder.op, return rewriter.notifyMatchFailure(binder.op,
"Failed to get axis attribute"); "Failed to get axis attribute");
if (binder.s64IntegerAttr(num_outputs, "num_outputs", 0)) if (binder.s64IntegerAttr(numOutputs, "num_outputs", 2))
return rewriter.notifyMatchFailure( return rewriter.notifyMatchFailure(
binder.op, "Failed to get num_outputs attribute"); binder.op, "Failed to get num_outputs attribute");
auto loc = binder.getLoc();
auto result0Ty = auto result0Ty =
binder.op->getResult(0).getType().cast<Torch::ValueTensorType>(); binder.op->getResult(0).getType().cast<Torch::ValueTensorType>();
auto resultNTy = binder.op->getResults()
.back()
.getType()
.cast<Torch::ValueTensorType>();
auto selfTy = self.getType().cast<Torch::ValueTensorType>(); auto selfTy = self.getType().cast<Torch::ValueTensorType>();
int64_t dim = axis; int64_t dim = axis;
if (dim < 0) if (dim < 0)
dim += selfTy.getSizes().size(); dim += selfTy.getSizes().size();
// set intermediate shape to the shape of the first result Value dimValue = rewriter.create<Torch::ConstantIntOp>(
// if the results are of different shapes loc, rewriter.getType<Torch::IntType>(),
// set the splitted axis to variable shape rewriter.getI64IntegerAttr(dim));
llvm::SmallVector<int64_t> intermediateShape(result0Ty.getSizes());
for (auto result : binder.op->getResultTypes()) { Value vNumOutputs = rewriter.create<Torch::ConstantIntOp>(
int64_t d = cast<Torch::ValueTensorType>(result).getSizes()[dim]; loc, rewriter.getType<Torch::IntType>(),
intermediateShape[dim] = d == intermediateShape[dim] ? d : -1; rewriter.getI64IntegerAttr(numOutputs));
Value one = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value zero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Value vDimSize = rewriter.create<Torch::AtenSizeIntOp>(
loc, rewriter.getType<Torch::IntType>(), self, dimValue);
Value addNumOutputs =
rewriter.create<Torch::AtenAddIntOp>(loc, vDimSize, vNumOutputs);
Value subOne =
rewriter.create<Torch::AtenSubIntOp>(loc, addNumOutputs, one);
Value splitSize =
rewriter.create<Torch::AtenFloordivIntOp>(loc, subOne, vNumOutputs);
llvm::SmallVector<Value> outputs;
Value step = one;
Value start = zero;
for (int i = 0; i < numOutputs - 1; ++i) {
Value end =
rewriter.create<Torch::AtenAddIntOp>(loc, start, splitSize);
Value slice = rewriter.create<Torch::AtenSliceTensorOp>(
loc, result0Ty, self, dimValue, start, end, step);
start = end;
outputs.push_back(slice);
} }
Value dimValue = rewriter.create<Torch::ConstantIntOp>( Value end = vDimSize;
binder.getLoc(), rewriter.getType<Torch::IntType>(), Value lastSlice = rewriter.create<Torch::AtenSliceTensorOp>(
rewriter.getIntegerAttr(rewriter.getIntegerType(64), dim)); loc, resultNTy, self, dimValue, start, end, step);
outputs.push_back(lastSlice);
Value splitSize = rewriter.create<Torch::ConstantIntOp>( rewriter.replaceOp(binder.op, outputs);
binder.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getIntegerAttr(rewriter.getIntegerType(64), num_outputs));
// TODO: Attempting to use the shape expected by the ONNX mlir as ground
// truth. For now just use dynamic shapes.
auto resultOuterType =
Torch::ListType::get(rewriter.getType<Torch::ValueTensorType>(
/*std::optional<llvm::ArrayRef<int64_t>>=*/intermediateShape,
result0Ty.getOptionalDtype()));
Torch::AtenSplitTensorOp new_op =
rewriter.create<Torch::AtenSplitTensorOp>(
binder.getLoc(), resultOuterType, self, splitSize, dimValue);
// the onnx op is variadic with multiple results, but AtenSplitWithSizes
// outputs a list so we need to unpack the list
rewriter.replaceOpWithNewOp<Torch::PrimListUnpackOp>(
binder.op, binder.op->getResults().getType(), new_op.getResult());
return success(); return success();
}); });

View File

@ -2718,7 +2718,6 @@ ONNX_XFAIL_SET = {
"ElementwiseToDtypeI64ToUI8Module_basic", "ElementwiseToDtypeI64ToUI8Module_basic",
"ElementwiseUnaryIntModule_basic", "ElementwiseUnaryIntModule_basic",
"ElementwiseUnsqueezeNegDimsModule_basic", "ElementwiseUnsqueezeNegDimsModule_basic",
"GluStaticModule_basic",
"GroupNormModule_basic", "GroupNormModule_basic",
"MaskedFillTensorFloatValueModule_basic", "MaskedFillTensorFloatValueModule_basic",
"NativeDropoutTrainModule_basic", "NativeDropoutTrainModule_basic",

View File

@ -1288,12 +1288,20 @@ func.func @test_split_variable_parts_2d_opset18(%arg0: !torch.vtensor<[2,6],f32>
// CHECK-LABEL: func.func @test_split_2d_uneven_split_opset18( // CHECK-LABEL: func.func @test_split_2d_uneven_split_opset18(
// CHECK-SAME: %[[INPUT_TENSOR:.*]]: !torch.vtensor<[2,8],f32>) -> (!torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,2],f32>) attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} { // CHECK-SAME: %[[INPUT_TENSOR:.*]]: !torch.vtensor<[2,8],f32>) -> (!torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,2],f32>) attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[AXIS:.*]] = torch.constant.int 1 // CHECK-DAG: %[[DIM:.+]] = torch.constant.int 1
// CHECK: %[[SPLIT_SIZE:.*]] = torch.constant.int 3 // CHECK-DAG: %[[SPLITS:.+]] = torch.constant.int 3
// CHECK: %[[SPLIT_RESULT:.*]] = torch.aten.split.Tensor %[[INPUT_TENSOR]], %[[SPLIT_SIZE]], %[[AXIS]] : !torch.vtensor<[2,8],f32>, !torch.int, !torch.int -> !torch.list<vtensor<[2,?],f32>> // CHECK-DAG: %[[ONE:.+]] = torch.constant.int 1
// CHECK: %[[UNPACKED_TENSORS:.*]]:3 = torch.prim.ListUnpack %[[SPLIT_RESULT]] : !torch.list<vtensor<[2,?],f32>> -> !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,2],f32> // CHECK-DAG: %[[ZERO:.+]] = torch.constant.int 0
// CHECK: return %[[UNPACKED_TENSORS]]#0, %[[UNPACKED_TENSORS]]#1, %[[UNPACKED_TENSORS]]#2 : !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,2],f32> // CHECK-DAG: %[[SZ1:.+]] = torch.aten.size.int %arg0, %[[DIM]]
// CHECK: } // CHECK-DAG: %[[ADD:.+]] = torch.aten.add.int %[[SZ1]], %[[SPLITS]]
// CHECK-DAG: %[[SUB:.+]] = torch.aten.sub.int %[[ADD]], %[[ONE]]
// CHECK-DAG: %[[SLICESZ:.+]] = torch.aten.floordiv.int %[[SUB]], %[[SPLITS]]
// CHECK-DAG: %[[START1:.+]] = torch.aten.add.int %[[ZERO]], %[[SLICESZ]] : !torch.int, !torch.int -> !torch.int
// CHECK-DAG: %[[SLICE0:.+]] = torch.aten.slice.Tensor %arg0, %[[DIM]], %[[ZERO]], %[[START1]], %[[ONE]] : !torch.vtensor<[2,8],f32>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[2,3],f32>
// CHECK-DAG: %[[START2:.+]] = torch.aten.add.int %[[START1]], %[[SLICESZ]] : !torch.int, !torch.int -> !torch.int
// CHECK-DAG: %[[SLICE1:.+]] = torch.aten.slice.Tensor %arg0, %[[DIM]], %[[START1]], %[[START2]], %[[ONE]] : !torch.vtensor<[2,8],f32>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[2,3],f32>
// CHECK-DAG: %[[SLICE2:.+]] = torch.aten.slice.Tensor %arg0, %[[DIM]], %[[START2]], %[[SZ1]], %[[ONE]] : !torch.vtensor<[2,8],f32>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[2,2],f32>
// CHECK: return %[[SLICE0]], %[[SLICE1]], %[[SLICE2]]
func.func @test_split_2d_uneven_split_opset18(%arg0: !torch.vtensor<[2,8],f32>) -> (!torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,2],f32>) attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} { func.func @test_split_2d_uneven_split_opset18(%arg0: !torch.vtensor<[2,8],f32>) -> (!torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,2],f32>) attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
%0:3 = torch.operator "onnx.Split"(%arg0) {torch.onnx.axis = 1 : si64, torch.onnx.num_outputs = 3 : si64} : (!torch.vtensor<[2,8],f32>) -> (!torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,2],f32>) %0:3 = torch.operator "onnx.Split"(%arg0) {torch.onnx.axis = 1 : si64, torch.onnx.num_outputs = 3 : si64} : (!torch.vtensor<[2,8],f32>) -> (!torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,2],f32>)
return %0#0, %0#1, %0#2 : !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,2],f32> return %0#0, %0#1, %0#2 : !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,3],f32>, !torch.vtensor<[2,2],f32>