Upstream the ONNX importer. (#2636)

This is part 1 of 2, which will also include upstreaming the FX
importer. I started with ONNX because it forces some project layout
updates and is more self contained/easier as a first step.

Deviating somewhat from the RFCs on project layout, I made the following
decisions:

* Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks
already has opened up that namespace and it seemed to fit. Better to
have fewer things at that level.
* Setup the build so that the root project only contains MLIR Python and
pure Python deps (like the importers), but this can be augmented with
the `projects/` adding more depending on which features are enabled.
* The default build continues to build everything whereas in
`TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a
`torch-mlir-core` wheel with the pure contents only.

`onnx_importer.py` and `importer_smoke_test.py` are almost verbatim
copies from SHARK-Turbine. I made some minor local alterations to adapt
to paths and generalize the way they interact with the outer project. I
expect I can copy these back to Turbine verbatim from here. I also
updated the license boilerplate (they have the same license but slightly
different project norms for the headers) but retained the correct
copyright.

Other updates:

* Added the ONNX importer unit test (which also can generate test data)
in lit, conditioned on the availability of the Python `onnx` package. In
a followup once I know everything is stable, I'll add another env var
that the CI can set to always enable this so we know conclusively if
tests pass.
* Moved the ONNX conversion readme to `docs/`.
* Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` ->
`TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the
JitIR importer and LTC options `cmake_dependent_options` for robustness.
pull/2637/head
Stella Laurenzo 2023-12-12 19:02:51 -08:00 committed by GitHub
parent f67249d34f
commit 74f7a0c9d6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 1208 additions and 149 deletions

View File

@ -25,6 +25,8 @@ project(torch-mlir LANGUAGES CXX C)
set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
include(CMakeDependentOption)
#-------------------------------------------------------------------------------
# Project options
#-------------------------------------------------------------------------------
@ -43,24 +45,11 @@ endif()
option(TORCH_MLIR_OUT_OF_TREE_BUILD "Specifies an out of tree build" OFF)
# PT1 options.
option(TORCH_MLIR_ENABLE_PROJECT_PT1 "Enables the PyTorch1 project under projects/pt1" OFF)
# TODO: Rename/scope these. They use historic names for now to ease migration
# burden.
option(TORCH_MLIR_ENABLE_JIT_IR_IMPORTER "Enables JIT IR Importer" ON)
option(TORCH_MLIR_ENABLE_LTC "Enables LTC backend" OFF)
option(TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS "Build Torch dialect MLIR Python bindings but neither JIT IR Importer nor LTC backend" OFF)
if(TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS)
set(TORCH_MLIR_ENABLE_JIT_IR_IMPORTER OFF)
set(TORCH_MLIR_ENABLE_LTC OFF)
endif()
# Force enable the PT1 project if either the JIT_IR_IMPORTER or LTC is enabled.
if(NOT TORCH_MLIR_ENABLE_PROJECT_PT1)
if(TORCH_MLIR_ENABLE_JIT_IR_IMPORTER OR TORCH_MLIR_ENABLE_LTC)
message(STATUS "Enabling projects/pt1 because features requiring it are enabled")
set(TORCH_MLIR_ENABLE_PROJECT_PT1 ON)
endif()
endif()
# PyTorch native extension gate. If OFF, then no features which depend on
# native extensions will be built.
option(TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS "Enables PyTorch native extension features" ON)
cmake_dependent_option(TORCH_MLIR_ENABLE_JIT_IR_IMPORTER "Enables JIT IR Importer" ON TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS OFF)
cmake_dependent_option(TORCH_MLIR_ENABLE_LTC "Enables LTC backend" OFF TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS OFF)
#-------------------------------------------------------------------------------
# Configure out-of-tree vs in-tree build
@ -235,4 +224,16 @@ endif()
# Sub-projects
#-------------------------------------------------------------------------------
# Sub-projects can bundle additional PyTorch extensions by adding them to this
# source target. It is typically empty unless if features are enabled.
if(MLIR_ENABLE_BINDINGS_PYTHON)
declare_mlir_python_sources(TorchMLIRPythonTorchExtensionsSources)
endif()
# Build projects first as it may populate additional Python deps.
add_subdirectory(projects)
# Finish with top-level Python bindings so it can handle additional deps.
if(MLIR_ENABLE_BINDINGS_PYTHON)
add_subdirectory(python)
endif()

View File

@ -351,7 +351,6 @@ function setup_venv() {
echo ":::: Using stable dependencies"
python3 -m pip install --no-cache-dir torch torchvision --index-url https://download.pytorch.org/whl/cpu
python3 -m pip install --no-cache-dir -r /main_checkout/torch-mlir/build-requirements.txt
python3 -m pip install --no-cache-dir -r /main_checkout/torch-mlir/test-requirements.txt
;;
*)
echo "Unrecognized torch version '$torch_version'"
@ -359,6 +358,7 @@ function setup_venv() {
;;
esac
python3 -m pip install --no-cache-dir -r /main_checkout/torch-mlir/test-requirements.txt
}
function build_out_of_tree() {

View File

@ -3,11 +3,8 @@
We enable the direct representation of many ONNX features directly in
the `torch` dialect as `torch.operator` custom ops with names like
`onnx.{OperatorName}`. The majority of ONNX operators are represented
with a systematic transformation. See
[onnx_importer.py](https://github.com/nod-ai/SHARK-Turbine/blob/main/python/shark_turbine/importers/onnx_importer.py)
for the reference importer which complies with the rules below
(this is planned to be upstreamed to torch-mlir proper in the near
future).
with a systematic transformation. `torch_mlir.extras.onnx_importer`
for the reference importer which complies with the rules below.
## Adding new ONNX operators
@ -26,10 +23,11 @@ are relatively straight-forward to map, following this general procedure:
* Open the corresponding implementation file `DefaultDomainXtoY.cpp`
corresponding with the alphabetic sort of the op and add a conversion.
* Generate successful test cases:
* Either run the Turbine importer to produce MLIR output for all
ops/models in the ONNX test suite or use a dump that someone has
generated:
* [2023-Nov-21](https://drive.google.com/file/d/1P6QaRXGnCeApjdjNmykLxWa-yqMmIO-d/view?usp=sharing)
* All `onnx_importer.py` tests are dumped to the test temp dir (success
or failure). This is typically located under
`tools/torch-mlir/test/python/onnx_importer/Output`. The `.mlir` files
under there should provide good variants to drive lit test coverage of
conversion.
* There are often many variants of tests for checking conformance of
different historic ONNX encodings, but these are often not load bearing
at the MLIR level.

View File

@ -1,7 +1,31 @@
include(AddMLIRPython)
################################################################################
# PyTorch
# Configure PyTorch if we have any features enabled which require it.
################################################################################
if(TORCH_MLIR_ENABLE_JIT_IR_IMPORTER OR TORCH_MLIR_ENABLE_LTC)
if (NOT TORCH_MLIR_USE_INSTALLED_PYTORCH)
# Source builds
message(STATUS "Building libtorch from source (features depend on it and NOT TORCH_MLIR_USE_INSTALLED_PYTORCH)")
set(ENV{TORCH_MLIR_SRC_PYTORCH_REPO} ${TORCH_MLIR_SRC_PYTORCH_REPO})
set(ENV{TORCH_MLIR_SRC_PYTORCH_BRANCH} ${TORCH_MLIR_SRC_PYTORCH_BRANCH})
set(ENV{TM_PYTORCH_INSTALL_WITHOUT_REBUILD} ${TM_PYTORCH_INSTALL_WITHOUT_REBUILD})
set(ENV{MACOSX_DEPLOYMENT_TARGET} ${MACOSX_DEPLOYMENT_TARGET})
set(ENV{CMAKE_OSX_ARCHITECTURES} ${CMAKE_OSX_ARCHITECTURES})
set(ENV{CMAKE_C_COMPILER_LAUNCHER} ${CMAKE_C_COMPILER_LAUNCHER})
set(ENV{CMAKE_CXX_COMPILER_LAUNCHER} ${CMAKE_CXX_COMPILER_LAUNCHER})
execute_process(
COMMAND ${TORCH_MLIR_SOURCE_DIR}/build_tools/build_libtorch.sh
RESULT_VARIABLE _result
)
if(_result)
message(FATAL_ERROR "Failed to run `build_libtorch.sh`")
endif()
set(TORCH_INSTALL_PREFIX "libtorch")
endif()
message(STATUS "Enabling PyTorch C++ dep (features depend on it)")
include(TorchMLIRPyTorch)
@ -48,6 +72,6 @@ if(TORCH_MLIR_ENABLE_LTC)
endif()
# Include overall PT1 project.
if(TORCH_MLIR_ENABLE_PROJECT_PT1)
if(TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS)
add_subdirectory(pt1)
endif()

View File

@ -7,44 +7,16 @@ set(CMAKE_PLATFORM_NO_VERSIONED_SONAME ON)
# argument.
set(TORCH_MLIR_PYTHON_ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/torch_mlir")
# We vendor our own MLIR instance in the `torch_mlir` namespace.
add_compile_definitions("MLIR_PYTHON_PACKAGE_PREFIX=torch_mlir.")
################################################################################
# PyTorch
################################################################################
# ################################################################################
# # Sources
# ################################################################################
if (NOT TORCH_MLIR_USE_INSTALLED_PYTORCH)
# Source builds
set(ENV{TORCH_MLIR_SRC_PYTORCH_REPO} ${TORCH_MLIR_SRC_PYTORCH_REPO})
set(ENV{TORCH_MLIR_SRC_PYTORCH_BRANCH} ${TORCH_MLIR_SRC_PYTORCH_BRANCH})
set(ENV{TM_PYTORCH_INSTALL_WITHOUT_REBUILD} ${TM_PYTORCH_INSTALL_WITHOUT_REBUILD})
set(ENV{MACOSX_DEPLOYMENT_TARGET} ${MACOSX_DEPLOYMENT_TARGET})
set(ENV{CMAKE_OSX_ARCHITECTURES} ${CMAKE_OSX_ARCHITECTURES})
set(ENV{CMAKE_C_COMPILER_LAUNCHER} ${CMAKE_C_COMPILER_LAUNCHER})
set(ENV{CMAKE_CXX_COMPILER_LAUNCHER} ${CMAKE_CXX_COMPILER_LAUNCHER})
execute_process(
COMMAND ${TORCH_MLIR_SOURCE_DIR}/build_tools/build_libtorch.sh
RESULT_VARIABLE _result
)
if(_result)
message(FATAL_ERROR "Failed to run `build_libtorch.sh`")
endif()
set(TORCH_INSTALL_PREFIX "libtorch")
endif()
################################################################################
# Sources
################################################################################
declare_mlir_python_sources(TorchMLIRPythonSources)
declare_mlir_python_sources(TorchMLIRPythonExtensions)
if (NOT TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS)
declare_mlir_python_sources(TorchMLIRPythonSources.TopLevel
ROOT_DIR "${TORCH_MLIR_PYTHON_ROOT_DIR}"
ADD_TO_PARENT TorchMLIRPythonSources
ADD_TO_PARENT TorchMLIRPythonTorchExtensionsSources
SOURCES
__init__.py
_dynamo_fx_importer.py
@ -52,35 +24,6 @@ if (NOT TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS)
dynamo.py
_version.py
)
endif()
declare_mlir_python_sources(TorchMLIRPythonSources.Dialects
ROOT_DIR "${TORCH_MLIR_PYTHON_ROOT_DIR}"
ADD_TO_PARENT TorchMLIRPythonSources
)
declare_mlir_dialect_python_bindings(
ADD_TO_PARENT TorchMLIRPythonSources.Dialects
ROOT_DIR "${TORCH_MLIR_PYTHON_ROOT_DIR}"
TD_FILE dialects/TorchBinding.td
SOURCES dialects/torch/__init__.py
DIALECT_NAME torch
)
################################################################################
# Extensions
################################################################################
declare_mlir_python_extension(TorchMLIRPythonExtensions.Main
MODULE_NAME _torchMlir
ADD_TO_PARENT TorchMLIRPythonExtensions
SOURCES
TorchMLIRModule.cpp
EMBED_CAPI_LINK_LIBS
TorchMLIRCAPI
PRIVATE_LINK_LIBS
LLVMSupport
)
################################################################################
# Lazy Tensor Core
@ -110,56 +53,23 @@ endif()
# add_subdirectory(torch_mlir/_torch_mlir_custom_op_example)
################################################################################
# Generate packages and shared library
# Downstreams typically will not use these, but they are useful for local
# testing.
################################################################################
set(_source_components
# TODO: Core is now implicitly building/registering all dialects, increasing
# build burden by ~5x. Make it stop.
# TODO: Reduce dependencies. We need ExecutionEngine and a bunch of passes
# for the reference backend, but logically they can be separate. But seemingly
# the only way to handle that is to create a separate mlir python package
# tree, which seems excessive.
MLIRPythonSources
MLIRPythonExtension.Core
MLIRPythonExtension.RegisterEverything
TorchMLIRPythonSources
TorchMLIRPythonExtensions
)
add_mlir_python_common_capi_library(TorchMLIRAggregateCAPI
INSTALL_COMPONENT TorchMLIRPythonModules
INSTALL_DESTINATION python_packages/torch_mlir/torch_mlir/_mlir_libs
OUTPUT_DIRECTORY "${TORCH_MLIR_PYTHON_PACKAGES_DIR}/torch_mlir/torch_mlir/_mlir_libs"
RELATIVE_INSTALL_ROOT "../../../.."
DECLARED_SOURCES ${_source_components}
)
add_mlir_python_modules(TorchMLIRPythonModules
ROOT_PREFIX "${TORCH_MLIR_PYTHON_PACKAGES_DIR}/torch_mlir/torch_mlir"
INSTALL_PREFIX "python_packages/torch_mlir/torch_mlir"
DECLARED_SOURCES ${_source_components}
COMMON_CAPI_LINK_LIBS
TorchMLIRAggregateCAPI
)
# TODO: Find a cleaner way to do this.
# Can we build the JIT IR importer with `declare_mlir_python_extension`?
# Then it would "just work".
if(TORCH_MLIR_ENABLE_JIT_IR_IMPORTER)
add_dependencies(TorchMLIRPythonModules TorchMLIRJITIRImporter)
add_dependencies(TorchMLIRPythonModules TorchMLIRJITIRImporterPybind)
# Build the E2E Tests (which depend on the JIT IR importer now).
add_dependencies(TorchMLIRPythonModules TorchMLIRE2ETestPythonModules)
add_dependencies(TorchMLIRPythonTorchExtensionsSources
TorchMLIRJITIRImporter
TorchMLIRJITIRImporterPybind
TorchMLIRE2ETestPythonModules
)
endif()
if(TORCH_MLIR_ENABLE_LTC)
# Add Torch-MLIR LTC backend as dependency
add_dependencies(TorchMLIRPythonModules torch_mlir_ltc_backend)
add_dependencies(TorchMLIRPythonModules reference_lazy_backend)
add_dependencies(TorchMLIRPythonTorchExtensionsSources
torch_mlir_ltc_backend
reference_lazy_backend
)
endif()
add_subdirectory(test)

View File

@ -4,9 +4,9 @@
## Declare the sources of the Python module.
declare_mlir_python_sources(TorchMLIRPythonSources.JitIRImporter
declare_mlir_python_sources(TorchMLIRPythonTorchExtensionsSources.JitIRImporter
ROOT_DIR "${TORCH_MLIR_PYTHON_ROOT_DIR}"
ADD_TO_PARENT TorchMLIRPythonSources
ADD_TO_PARENT TorchMLIRPythonTorchExtensionsSources
SOURCES_GLOB
jit_ir_importer/*.py
)

View File

@ -0,0 +1,94 @@
# Disables generation of "version soname" (i.e. libFoo.so.<version>), which
# causes pure duplication as part of Python wheels.
set(CMAKE_PLATFORM_NO_VERSIONED_SONAME ON)
# The directory at which the Python import tree begins.
# See documentation for `declare_mlir_python_sources`'s ROOT_DIR
# argument.
set(TORCH_MLIR_PYTHON_ROOT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/torch_mlir")
# We vendor our own MLIR instance in the `torch_mlir` namespace.
add_compile_definitions("MLIR_PYTHON_PACKAGE_PREFIX=torch_mlir.")
################################################################################
# Sources
################################################################################
declare_mlir_python_sources(TorchMLIRPythonSources)
declare_mlir_python_sources(TorchMLIRPythonExtensions)
declare_mlir_python_sources(TorchMLIRPythonSources.Dialects
ROOT_DIR "${TORCH_MLIR_PYTHON_ROOT_DIR}"
ADD_TO_PARENT TorchMLIRPythonSources
)
declare_mlir_dialect_python_bindings(
ADD_TO_PARENT TorchMLIRPythonSources.Dialects
ROOT_DIR "${TORCH_MLIR_PYTHON_ROOT_DIR}"
TD_FILE dialects/TorchBinding.td
SOURCES dialects/torch/__init__.py
DIALECT_NAME torch
)
declare_mlir_python_sources(TorchMLIRPythonSources.Importers
ROOT_DIR "${TORCH_MLIR_PYTHON_ROOT_DIR}"
ADD_TO_PARENT TorchMLIRPythonSources
SOURCES
extras/onnx_importer.py
)
################################################################################
# Extensions
################################################################################
declare_mlir_python_extension(TorchMLIRPythonExtensions.Main
MODULE_NAME _torchMlir
ADD_TO_PARENT TorchMLIRPythonExtensions
SOURCES
TorchMLIRModule.cpp
EMBED_CAPI_LINK_LIBS
TorchMLIRCAPI
PRIVATE_LINK_LIBS
LLVMSupport
)
################################################################################
# Generate packages and shared library
# Downstreams typically will not use these, but they are useful for local
# testing.
################################################################################
set(_source_components
# TODO: Core is now implicitly building/registering all dialects, increasing
# build burden by ~5x. Make it stop.
# TODO: Reduce dependencies. We need ExecutionEngine and a bunch of passes
# for the reference backend, but logically they can be separate. But seemingly
# the only way to handle that is to create a separate mlir python package
# tree, which seems excessive.
MLIRPythonSources
MLIRPythonExtension.Core
MLIRPythonExtension.RegisterEverything
TorchMLIRPythonSources
TorchMLIRPythonExtensions
# Sources related to optional Torch extension dependent features. Typically
# empty unless if project features are enabled.
TorchMLIRPythonTorchExtensionsSources
)
add_mlir_python_common_capi_library(TorchMLIRAggregateCAPI
INSTALL_COMPONENT TorchMLIRPythonModules
INSTALL_DESTINATION python_packages/torch_mlir/torch_mlir/_mlir_libs
OUTPUT_DIRECTORY "${TORCH_MLIR_PYTHON_PACKAGES_DIR}/torch_mlir/torch_mlir/_mlir_libs"
RELATIVE_INSTALL_ROOT ".."
DECLARED_SOURCES ${_source_components}
)
add_mlir_python_modules(TorchMLIRPythonModules
ROOT_PREFIX "${TORCH_MLIR_PYTHON_PACKAGES_DIR}/torch_mlir/torch_mlir"
INSTALL_PREFIX "python_packages/torch_mlir/torch_mlir"
DECLARED_SOURCES ${_source_components}
COMMON_CAPI_LINK_LIBS
TorchMLIRAggregateCAPI
)

View File

@ -0,0 +1,607 @@
# Based on code Copyright (c) Advanced Micro Devices, Inc.
#
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
"""Imports ONNX graphs to `torch` dialect ops.
See documentation:
https://github.com/llvm/torch-mlir/blob/main/docs/importers/onnx_importer.md
This file is distributed/forked verbatim into various downstream projects, and
it must abide by several rules above and beyond the rest of the codebase:
- It must be standalone, only depending on:
- `onnx`
- `..ir` relative imports to the main IR directory
- `..dialects.func` relative import to the `func` dialect (TODO:
we are looking to eliminate this dep).
- Python standard library
- It does not directly use the ODS generated `torch` dialect Python
wrappers. This allows it to be used in contexts that only build a C++
compiler with minimal IR Python bindings.
- It is intended as an enabler for full onnx compilation, only handling
the import from ONNX -> the `torch` dialect. Testing, full pipelines,
and utilities belong elsewhere.
"""
try:
import onnx
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
"The onnx package (`pip install onnx`) is required to use the onnx importer"
) from e
from typing import Optional
from dataclasses import dataclass
import numpy as np
from ..ir import (
ArrayAttr,
Attribute,
Block,
Context,
DenseElementsAttr,
DenseResourceElementsAttr,
DictAttr,
FloatAttr,
BF16Type,
ComplexType,
F16Type,
F32Type,
F64Type,
Float8E4M3FNType,
Float8E5M2FNUZType,
Float8E5M2Type,
FunctionType,
InsertionPoint,
IntegerAttr,
IntegerType,
MLIRError,
RankedTensorType,
Location,
Module,
Operation,
StringAttr,
Type as IrType,
Value,
)
from ..dialects import (
func as func_dialect,
)
@dataclass
class Config:
"""Various configuration settings for the importer."""
# Ancient ONNX exporters would often add a model input for anything that
# might be mutable, providing an initializer for it as well. More modern
# tools tools realized this is a really bad idea for a lot of reasons.
# We choose to assume more recent norms, even if encountering older
# models. Setting this to False probably won't do what you want but
# should produce interesting errors to waste your time deciphering.
# We mainly use it as a way to document in the code that we are
# making an assumption.
elide_initialized_inputs: bool = True
class ModelInfo:
"""Top-level accounting and accessors for an ONNX model."""
def __init__(self, model_proto: onnx.ModelProto, *, config: Config = Config()):
self.config = config
self.model_proto = model_proto
assert model_proto.graph, "Model must contain a main Graph"
self.main_graph = GraphInfo(self, model_proto.graph)
def create_module(self, context: Optional[Context] = None) -> Operation:
if not context:
context = Context()
module_op = Module.create(Location.unknown(context)).operation
# TODO: Populate module level metadata from the ModelProto
return module_op
class GraphInfo:
"""Information about a Graph within a model."""
def __init__(self, model_info: ModelInfo, graph_proto: onnx.GraphProto):
self.model_info = model_info
self.graph_proto = graph_proto
self.initializer_map: dict[str, onnx.TensorProto] = {
n.name: n for n in graph_proto.initializer
}
self.value_info_map: dict[str, onnx.ValueInfoProto] = {
n.name: n for n in graph_proto.value_info
}
self.declared_input_map: dict[str, onnx.ValueInfoProto] = {
n.name: n for n in graph_proto.input
}
self.output_map: dict[str, onnx.ValueInfoProto] = {
n.name: n for n in graph_proto.output
}
# Generate the effective input map, which for old models can be a
# subset of the input map.
if model_info.config.elide_initialized_inputs:
self.input_map = {
k: v
for k, v in self.declared_input_map.items()
if k not in self.initializer_map
}
else:
self.input_map = self.declared_input_map
illegal_input_keys = self.input_map.keys() - (
self.input_map.keys() - self.initializer_map.keys()
)
assert self.input_map.keys().isdisjoint(self.initializer_map.keys()), (
f"When not in elide_initialized_inputs=True, we expect inputs to not "
f"have an initial value (got {illegal_input_keys})."
)
def find_type_proto_for_name(self, name: str) -> onnx.TypeProto:
# Node outputs don't typically have type information, but shape inference
# will associate them in the value_info. If not there, it may be a
# graph output, which must have type information.
value_info = self.value_info_map.get(name) or self.output_map.get(name)
if value_info is not None:
return value_info.type
raise OnnxImportError(
f"No type information associated with '{name}'. Run shape inference?"
)
class OnnxImportError(Exception):
...
class NodeImporter:
"""Imports graph nodes into MLIR.
Typically, the top level graph will be imported into a func whereas dependent
graphs may just be imported with references to pre-existing values.
Note that ONNX requires that graphs be sorted topologically and free of cycles,
so we don't take any special steps to order them for dominance.
"""
__slots__ = [
"_c",
"_cc",
"_gi",
"_p",
"_b",
"_nv_map",
]
def __init__(
self,
graph_info: GraphInfo,
*,
parent_op: Operation,
block: Block,
context_cache: "ContextCache",
):
self._c = parent_op.context
self._cc = context_cache
self._gi = graph_info
self._p = parent_op
self._b = block
self._nv_map: dict[str, Value] = {}
@classmethod
def define_function(
cls, graph_info: GraphInfo, module_op: Operation
) -> "NodeImporter":
cc = ContextCache(module_op.context)
with module_op.context, Location.name(f"graph:{graph_info.graph_proto.name}"):
body = module_op.regions[0].blocks[0]
func_name = graph_info.graph_proto.name
input_types = [
cc.type_proto_to_type(inp.type) for inp in graph_info.input_map.values()
]
output_types = [
cc.type_proto_to_type(out.type)
for out in graph_info.output_map.values()
]
ftype = FunctionType.get(input_types, output_types)
func_op = func_dialect.FuncOp(func_name, ftype, ip=InsertionPoint(body))
block = func_op.add_entry_block(
[Location.name(k) for k in graph_info.input_map.keys()]
)
imp = NodeImporter(graph_info, parent_op=func_op, block=block, context_cache=cc)
for node_name, input_value in zip(graph_info.input_map.keys(), block.arguments):
imp._nv_map[node_name] = input_value
imp._populate_graph_attrs(func_op)
return imp
def _populate_graph_attrs(self, container_op: Operation):
"""Populates graph level meta attributes on the given container op."""
m = self._gi.model_info.model_proto
with container_op.context:
i64_type = IntegerType.get_signed(64)
default_opset_version = 0
opset_versions: dict[str, IntegerAttr] = {}
for opset_import in m.opset_import:
if opset_import.domain:
opset_versions[opset_import.domain] = IntegerAttr.get(
i64_type, opset_import.version
)
else:
default_opset_version = opset_import.version
if default_opset_version:
container_op.attributes[
"torch.onnx_meta.opset_version"
] = IntegerAttr.get(i64_type, default_opset_version)
if opset_versions:
container_op.attributes[
"torch.onnx_meta.opset_versions"
] = DictAttr.get(opset_versions)
container_op.attributes["torch.onnx_meta.ir_version"] = IntegerAttr.get(
IntegerType.get_signed(64), m.ir_version
)
container_op.attributes["torch.onnx_meta.producer_name"] = StringAttr.get(
m.producer_name
)
container_op.attributes[
"torch.onnx_meta.producer_version"
] = StringAttr.get(m.producer_version)
def import_all(self):
"""Imports all nodes topologically."""
# TODO: Consider pulling in initializers on demand since there can be so
# much unused crap.
for init in self._gi.initializer_map.values():
self.import_initializer(init)
for node in self._gi.graph_proto.node:
self.import_node(node)
outputs = []
for output_name in self._gi.output_map.keys():
try:
outputs.append(self._nv_map[output_name])
except KeyError:
raise OnnxImportError(
f"Non topologically produced ONNX graph output '{output_name}'"
)
with InsertionPoint(self._b), Location.unknown():
func_dialect.ReturnOp(outputs)
def import_node(self, node: onnx.NodeProto):
with InsertionPoint(self._b), Location.name(node.name):
op_type = node.op_type
# Handle special op types that materialize to non-op IR constructs.
special_key = f"_handle_node_{op_type}"
if hasattr(self, special_key):
getattr(self, special_key)(node)
return
# General node import.
input_values = []
for input_name in node.input:
try:
input_values.append(self._nv_map[input_name])
except KeyError:
raise OnnxImportError(
f"Non topologically produced ONNX node input '{input_name}': {node}"
)
output_names = list(node.output)
output_types = [
self._cc.type_proto_to_type(self._gi.find_type_proto_for_name(n))
for n in output_names
]
# TODO: Attributes.
attrs = {
"name": StringAttr.get(f"onnx.{op_type}"),
}
self.import_attributes(node.attribute, attrs)
custom_op = Operation.create(
name="torch.operator",
results=output_types,
operands=input_values,
attributes=attrs,
)
for output_name, output_value in zip(output_names, custom_op.results):
self._nv_map[output_name] = output_value
def import_attributes(
self, onnx_attrs: list[onnx.AttributeProto], attrs: dict[str, Attribute]
):
for onnx_attr in onnx_attrs:
attr_type = onnx_attr.type
if attr_type not in ATTRIBUTE_TYPE_HANDLERS:
raise OnnxImportError(
f"Unhandled ONNX attribute type code {attr_type}: {onnx_attr}"
)
handler = ATTRIBUTE_TYPE_HANDLERS[attr_type]
if handler is None:
# Active skip.
continue
elif handler is False:
# Active error.
raise OnnxImportError(
f"ONNX importer does not support generic node attribute type {attr_type}. "
f"This likely means that this is a special node which requires specific "
f"handling in the importer: {onnx_attr}"
)
attrs[f"torch.onnx.{onnx_attr.name}"] = handler(onnx_attr, self._cc)
def import_initializer(self, initializer: onnx.TensorProto) -> Value:
with InsertionPoint(self._b), Location.name(initializer.name):
value_attr = self._cc.tensor_proto_to_attr(initializer)
vtensor_type = self._cc.tensor_proto_to_type(initializer)
literal_op = Operation.create(
name="torch.vtensor.literal",
results=[vtensor_type],
attributes={"value": value_attr},
)
self._nv_map[initializer.name] = literal_op.result
return literal_op.result
def _get_immediate_tensor(self, name: str) -> np.array:
try:
initializer = self._gi.initializer_map[name]
except KeyError:
raise OnnxImportError(
f"An immediate value for '{name}' was required but it is dynamically produced."
)
try:
dtype = ELEM_TYPE_TO_NUMPY_DTYPE[initializer.data_type]
except KeyError:
raise OnnxImportError(
f"Unknown ONNX tensor element type to numpy dtype mapping: {initializer.data_type}"
)
raw_data = initializer.raw_data
if raw_data:
return np.frombuffer(raw_data, dtype=dtype).reshape(tuple(initializer.dims))
else:
raise OnnxImportError(
f"Unhandled ONNX TensorProto immediate data: {initializer}"
)
def _handle_node_ConstantOfShape(self, node: onnx.NodeProto):
# This op is special: It has an input of the shape, and in full generality
# could involve eager production of constants of variable size. In
# practice, the DNN profile for ONNX makes this very difficult to do
# and we hard-assert that the input can be resolved to an immediate
# value.
assert len(node.input) == 1
assert len(node.output) == 1
shape = self._get_immediate_tensor(node.input[0]).astype(np.int64)
value_proto = _get_attr(node, "value")
assert value_proto.type == onnx.AttributeProto.AttributeType.TENSOR
tensor_proto = value_proto.t
element_type = self._cc.tensor_element_type(tensor_proto.data_type)
vtensor_type = self._cc.get_vtensor_type(tuple(shape), element_type)
assert len(tensor_proto.dims) == 1 and tensor_proto.dims[0] == 1
try:
cb = ELEM_TYPE_SPLAT_TENSOR_PROTO_CB[tensor_proto.data_type]
except KeyError:
raise OnnxImportError(
f"Unhandled splat type for ConstantOfShape: {node} (possible missing mapping in ELEM_TYPE_SPLAT_TENSOR_PROTO_CB)"
)
value_attr = cb(tensor_proto, tuple(shape))
literal_op = Operation.create(
name="torch.vtensor.literal",
results=[vtensor_type],
attributes={"value": value_attr},
)
self._nv_map[node.output[0]] = literal_op.result
class ContextCache:
"""Caches per-context lookups of various things."""
__slots__ = [
"_c",
"_elem_type_map",
"_vtensor_type_map",
]
def __init__(self, context: Context):
self._c = context
self._elem_type_map: dict[int, IrType] = {}
self._vtensor_type_map: dict[tuple[tuple[Optional[int]], IrType], IrType] = {}
def tensor_element_type(self, elem_type: int) -> IrType:
t = self._elem_type_map.get(elem_type)
if t is None:
try:
with self._c:
t = ELEM_TYPE_TO_IR_TYPE_CB[elem_type]()
except KeyError:
raise OnnxImportError(f"Unknown ONNX tensor element type: {elem_type}")
self._elem_type_map[elem_type] = t
return t
def get_vtensor_type(
self, dims: tuple[Optional[int]], element_type: IrType
) -> IrType:
key = (dims, element_type)
t = self._vtensor_type_map.get(key)
if t is None:
shape_asm = ",".join("?" if d is None else str(d) for d in dims)
asm = f"!torch.vtensor<[{shape_asm}],{str(element_type)}>"
try:
t = IrType.parse(asm, context=self._c)
except MLIRError as e:
raise OnnxImportError(
f"Unparseable torch type (MLIR asm format bug?): {asm}"
) from e
self._vtensor_type_map[key] = t
return t
def tensor_proto_to_type(self, tp: onnx.TensorProto) -> IrType:
element_type = self.tensor_element_type(tp.data_type)
return self.get_vtensor_type(tuple(tp.dims), element_type)
def tensor_proto_to_builtin_type(self, tp: onnx.TensorProto) -> IrType:
element_type = self.tensor_element_type(tp.data_type)
# TODO: Fixme upstream: RankedTensorType.get should not require a location.
with Location.unknown():
return RankedTensorType.get(tuple(tp.dims), element_type)
def type_proto_to_type(self, tp: onnx.TypeProto) -> IrType:
if tp.tensor_type:
tt = tp.tensor_type
if not tt.shape:
raise OnnxImportError(
f"Unsupported Tensor type without shape (run shape inference?): {tp}"
)
element_type = self.tensor_element_type(tt.elem_type)
dims = tuple(
(d.dim_value if not d.dim_param else None) for d in tt.shape.dim
)
return self.get_vtensor_type(dims, element_type)
else:
# TODO: Others if ever needed. Or we consider ourselves DNN-only.
# See TypeProto: sequence_type, map_type, optional_type, sparse_tensor_type.
raise OnnxImportError(f"Unsupported ONNX TypeProto: {tp}")
def tensor_proto_to_attr(self, tp: onnx.TensorProto) -> Attribute:
tensor_type = self.tensor_proto_to_builtin_type(tp)
if tp.HasField("raw_data"):
# Conveniently, DenseResourceElementsAttr shares the raw data
# format. We just give it maximum numeric alignment.
return DenseResourceElementsAttr.get_from_buffer(
tp.raw_data, tp.name, tensor_type, alignment=8
)
else:
# We have to do a data type specific instantiation from proto fields.
# Since this is typically used for small tensor constants, we instantiate
# as a DenseElementsAttr.
handler = ELEM_TYPE_INLINE_TENSOR_PROTO_CB.get(tp.data_type)
if handler is None:
raise OnnxImportError(f"Unhandled ONNX TensorProto data: {tp}")
return handler(tp)
ELEM_TYPE_TO_IR_TYPE_CB = {
onnx.TensorProto.DataType.FLOAT: lambda: F32Type.get(),
onnx.TensorProto.DataType.UINT8: lambda: IntegerType.get_unsigned(8),
onnx.TensorProto.DataType.INT8: lambda: IntegerType.get_signed(8),
onnx.TensorProto.DataType.UINT16: lambda: IntegerType.get_unsigned(16),
onnx.TensorProto.DataType.INT16: lambda: IntegerType.get_signed(16),
onnx.TensorProto.DataType.INT32: lambda: IntegerType.get_signed(32),
onnx.TensorProto.DataType.INT64: lambda: IntegerType.get_signed(64),
onnx.TensorProto.DataType.BOOL: lambda: IntegerType.get_signless(1),
onnx.TensorProto.DataType.FLOAT16: lambda: F16Type.get(),
onnx.TensorProto.DataType.DOUBLE: lambda: F64Type.get(),
onnx.TensorProto.DataType.UINT32: lambda: IntegerType.get_unsigned(32),
onnx.TensorProto.DataType.UINT64: lambda: IntegerType.get_unsigned(64),
onnx.TensorProto.DataType.COMPLEX64: lambda: ComplexType.get(F32Type.get()),
onnx.TensorProto.DataType.COMPLEX128: lambda: ComplexType.get(F64Type.get()),
onnx.TensorProto.DataType.BFLOAT16: lambda: BF16Type.get(),
onnx.TensorProto.DataType.FLOAT8E4M3FN: lambda: Float8E4M3FNType.get(),
onnx.TensorProto.DataType.FLOAT8E4M3FNUZ: lambda: Float8E5M2FNUZType.get(),
onnx.TensorProto.DataType.FLOAT8E5M2: lambda: Float8E5M2Type.get(),
onnx.TensorProto.DataType.FLOAT8E5M2FNUZ: lambda: Float8E5M2FNUZType.get(),
# Ommitted: STRING,
}
ELEM_TYPE_SPLAT_TENSOR_PROTO_CB = {
onnx.TensorProto.DataType.FLOAT: lambda tp, shape: DenseElementsAttr.get_splat(
RankedTensorType.get(shape, F32Type.get()), FloatAttr.get_f32(tp.float_data[0])
),
# TODO: All the rest from ELEM_TYPE_TO_IR_TYPE_CB
}
# Mapping of TensorProto.DataType to lambda TensorProto, returning a DenseElementsAttr
# of the builtin tensor type for cases where the tensor data is inlined as typed
# values instead of raw_data.
ELEM_TYPE_INLINE_TENSOR_PROTO_CB = {
onnx.TensorProto.DataType.FLOAT: lambda tp: DenseElementsAttr.get(
np.asarray(tp.float_data, dtype=np.float32).reshape(tp.dims), signless=False
),
onnx.TensorProto.DataType.INT32: lambda tp: DenseElementsAttr.get(
np.asarray(tp.int32_data, dtype=np.int32).reshape(tp.dims), signless=False
),
onnx.TensorProto.DataType.INT64: lambda tp: DenseElementsAttr.get(
np.asarray(tp.int64_data, dtype=np.int64).reshape(tp.dims), signless=False
),
onnx.TensorProto.DataType.DOUBLE: lambda tp: DenseElementsAttr.get(
np.asarray(tp.double_data, dtype=np.float64).reshape(tp.dims)
),
onnx.TensorProto.DataType.UINT32: lambda tp: DenseElementsAttr.get(
# Special case. See proto
np.asarray(tp.uint64_data, dtype=np.uint32).reshape(tp.dims),
signless=False,
),
onnx.TensorProto.DataType.UINT64: lambda tp: DenseElementsAttr.get(
np.asarray(tp.uint64_data, dtype=np.uint64).reshape(tp.dims), signless=False
)
# Intentionally unsupported: STRING
}
ELEM_TYPE_TO_NUMPY_DTYPE = {
onnx.TensorProto.DataType.FLOAT: np.float32,
onnx.TensorProto.DataType.UINT8: np.uint8,
onnx.TensorProto.DataType.INT8: np.int8,
onnx.TensorProto.DataType.UINT16: np.uint16,
onnx.TensorProto.DataType.INT16: np.int16,
onnx.TensorProto.DataType.INT32: np.int32,
onnx.TensorProto.DataType.INT64: np.int64,
onnx.TensorProto.DataType.BOOL: np.bool_,
onnx.TensorProto.DataType.FLOAT16: np.float16,
onnx.TensorProto.DataType.DOUBLE: np.float64,
onnx.TensorProto.DataType.UINT32: np.uint32,
onnx.TensorProto.DataType.UINT64: np.uint64,
onnx.TensorProto.DataType.COMPLEX64: np.complex64,
onnx.TensorProto.DataType.COMPLEX128: np.complex128,
# onnx.TensorProto.DataType.BFLOAT16:
# onnx.TensorProto.DataType.FLOAT8E4M3FN:
# onnx.TensorProto.DataType.FLOAT8E4M3FNUZ:
# onnx.TensorProto.DataType.FLOAT8E5M2:
# onnx.TensorProto.DataType.FLOAT8E5M2FNUZ:
# Ommitted: STRING,
}
# Mapping of AttributeType code to one of:
# None: Ignore attribute and do not output to MLIR
# False: Error if an attribute of this type is present
# lambda a:AttributeProto, cc: ContextCache that returns an MLIR Attribute
ATTRIBUTE_TYPE_HANDLERS = {
onnx.AttributeProto.AttributeType.UNDEFINED: False,
onnx.AttributeProto.AttributeType.FLOAT: lambda a, cc: FloatAttr.get(
F32Type.get(), a.f
),
onnx.AttributeProto.AttributeType.INT: lambda a, cc: IntegerAttr.get(
IntegerType.get_signed(64), a.i
),
onnx.AttributeProto.AttributeType.STRING: lambda a, cc: StringAttr.get(a.s),
onnx.AttributeProto.AttributeType.TENSOR: lambda a, cc: cc.tensor_proto_to_attr(
a.t
),
onnx.AttributeProto.AttributeType.GRAPH: False,
onnx.AttributeProto.AttributeType.SPARSE_TENSOR: False,
onnx.AttributeProto.AttributeType.TYPE_PROTO: False,
onnx.AttributeProto.AttributeType.FLOATS: lambda a, cc: ArrayAttr.get(
[FloatAttr.get(F32Type.get(), f) for f in a.floats]
),
onnx.AttributeProto.AttributeType.INTS: lambda a, cc: ArrayAttr.get(
[IntegerAttr.get(IntegerType.get_signed(64), i) for i in a.ints]
),
onnx.AttributeProto.AttributeType.STRINGS: lambda a, cc: ArrayAttr.get(
[StringAttr.get(s) for s in a.strings]
),
onnx.AttributeProto.AttributeType.TENSORS: lambda a, cc: ArrayAttr.get(
[cc.tensor_proto_to_attr(t) for t in a.tensors]
),
onnx.AttributeProto.AttributeType.GRAPHS: False,
onnx.AttributeProto.AttributeType.SPARSE_TENSORS: False,
onnx.AttributeProto.AttributeType.TYPE_PROTOS: False,
}
def _get_attr(node: onnx.NodeProto, attr_name: str) -> onnx.AttributeProto:
for attr in node.attribute:
if attr.name == attr_name:
return attr
else:
raise OnnxImportError(f"Required attribute {attr_name} not found in {node}")

View File

@ -47,8 +47,6 @@ PACKAGE_VERSION = os.environ.get("TORCH_MLIR_PYTHON_PACKAGE_VERSION") or "0.0.1"
# If true, enable LTC build by default
TORCH_MLIR_ENABLE_LTC_DEFAULT = True
TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS = int(os.environ.get('TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS', False))
if not TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS:
import torch
# Build phase discovery is unreliable. Just tell it what phases to run.
class CustomBuild(_build):
@ -91,7 +89,7 @@ class CMakeBuild(build_py):
f"-DCMAKE_C_VISIBILITY_PRESET=hidden",
f"-DCMAKE_CXX_VISIBILITY_PRESET=hidden",
f"-DTORCH_MLIR_ENABLE_LTC={'ON' if enable_ltc else 'OFF'}",
f"-DTORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS={'ON' if TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS else 'OFF'}",
f"-DTORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS={'OFF' if TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS else 'ON'}",
]
os.makedirs(cmake_build_dir, exist_ok=True)
@ -145,8 +143,31 @@ with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
# Requires and extension modules depend on whether building PyTorch
# extensions.
INSTALL_REQUIRES = [
"numpy",
"packaging",
]
EXT_MODULES = [
CMakeExtension("torch_mlir._mlir_libs._torchMlir"),
]
NAME = "torch-mlir-core"
# If building PyTorch extensions, customize.
if not TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS:
import torch
NAME = "torch-mlir"
INSTALL_REQUIRES.extend([
f"torch=={torch.__version__}".split("+", 1)[0],
])
EXT_MODULES.extend([
CMakeExtension("torch_mlir._mlir_libs._jit_ir_importer"),
])
setup(
name="torch-mlir" if not TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS else "torch-mlir-core",
name=NAME,
version=f"{PACKAGE_VERSION}",
author="Sean Silva",
author_email="silvasean@google.com",
@ -159,10 +180,12 @@ setup(
"built_ext": NoopBuildExtension,
"build_py": CMakeBuild,
},
ext_modules=[
CMakeExtension("torch_mlir._mlir_libs._jit_ir_importer"),
] if not TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS else [CMakeExtension("torch_mlir._mlir_libs._torchMlir")],
install_requires=["numpy", "packaging"] + (
[f"torch=={torch.__version__}".split("+", 1)[0], ] if not TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS else []),
ext_modules=EXT_MODULES,
install_requires=INSTALL_REQUIRES,
extras_require={
"onnx": [
"onnx>=1.15.0",
],
}
zip_safe=False,
)

View File

@ -1,3 +1,4 @@
pillow
dill
multiprocess
onnx==1.15.0

View File

@ -0,0 +1,2 @@
if not config.enable_bindings_python:
config.unsupported = True

View File

@ -0,0 +1 @@
output/

View File

@ -0,0 +1,19 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
# RUN: %PYTHON %s
"""This file exists so that the tests can find/configure torch_mlir.
It allows the test file to be standalone and used verbatim in other
projects (i.e. by just providing this file on the side).
"""
from torch_mlir import ir
from torch_mlir.extras import onnx_importer
def configure_context(context):
from torch_mlir.dialects import torch as torch_d
torch_d.register_dialect(context)

View File

@ -0,0 +1,374 @@
# Based on code Copyright (c) Advanced Micro Devices, Inc.
#
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
# RUN: %PYTHON %s --output %t
from glob import glob
from pathlib import Path
import logging
import sys
import unittest
import onnx
from _torch_mlir_config import (
configure_context,
ir,
onnx_importer,
)
# Accept the output path on the command line or default to a sibling
# to this file. We have to pop this off explicitly or else unittest
# won't understand.
if len(sys.argv) > 1 and sys.argv[1] == "--output":
OUTPUT_PATH = Path(sys.argv[2])
del sys.argv[1:3]
else:
OUTPUT_PATH = Path(__file__).resolve().parent / "output"
# TODO: Add some verification and overrides. For now, just use the
# onnx package install for onnx test files, since they were nice
# enough to include the test suite in the deployable.
import onnx.backend.test.data
ONNX_TEST_DATA_DIR = Path(onnx.backend.test.__file__).resolve().parent / "data"
print(f"ONNX Test Data Dir: {ONNX_TEST_DATA_DIR}")
ONNX_REL_PATHS = glob(f"**/*.onnx", root_dir=ONNX_TEST_DATA_DIR, recursive=True)
OUTPUT_PATH.mkdir(parents=True, exist_ok=True)
TEST_CAST_XFAILS = [
"light_light_bvlc_alexnet",
"light_light_inception_v1",
"light_light_squeezenet",
"light_light_vgg19",
"node_test_affine_grid_2d_align_corners_expanded_model",
"node_test_affine_grid_2d_expanded_model",
"node_test_affine_grid_3d_align_corners_expanded_model",
"node_test_affine_grid_3d_expanded_model",
"node_test_ai_onnx_ml_label_encoder_string_int_model",
"node_test_ai_onnx_ml_label_encoder_string_int_no_default_model",
"node_test_ai_onnx_ml_label_encoder_tensor_mapping_model",
"node_test_ai_onnx_ml_label_encoder_tensor_value_only_mapping_model",
"node_test_cast_FLOAT16_to_FLOAT8E4M3FNUZ_model",
"node_test_cast_FLOAT16_to_FLOAT8E4M3FN_model",
"node_test_cast_FLOAT16_to_FLOAT8E5M2FNUZ_model",
"node_test_cast_FLOAT16_to_FLOAT8E5M2_model",
"node_test_cast_FLOAT8E4M3FNUZ_to_FLOAT16_model",
"node_test_cast_FLOAT8E4M3FNUZ_to_FLOAT_model",
"node_test_cast_FLOAT8E4M3FN_to_FLOAT16_model",
"node_test_cast_FLOAT8E4M3FN_to_FLOAT_model",
"node_test_cast_FLOAT8E5M2FNUZ_to_FLOAT16_model",
"node_test_cast_FLOAT8E5M2FNUZ_to_FLOAT_model",
"node_test_cast_FLOAT8E5M2_to_FLOAT16_model",
"node_test_cast_FLOAT8E5M2_to_FLOAT_model",
"node_test_cast_FLOAT_to_FLOAT8E4M3FNUZ_model",
"node_test_cast_FLOAT_to_FLOAT8E4M3FN_model",
"node_test_cast_FLOAT_to_FLOAT8E5M2FNUZ_model",
"node_test_cast_FLOAT_to_FLOAT8E5M2_model",
"node_test_cast_FLOAT_to_STRING_model",
"node_test_cast_STRING_to_FLOAT_model",
"node_test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FNUZ_model",
"node_test_cast_no_saturate_FLOAT16_to_FLOAT8E4M3FN_model",
"node_test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2FNUZ_model",
"node_test_cast_no_saturate_FLOAT16_to_FLOAT8E5M2_model",
"node_test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FNUZ_model",
"node_test_cast_no_saturate_FLOAT_to_FLOAT8E4M3FN_model",
"node_test_cast_no_saturate_FLOAT_to_FLOAT8E5M2FNUZ_model",
"node_test_cast_no_saturate_FLOAT_to_FLOAT8E5M2_model",
"node_test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_expanded_model",
"node_test_castlike_FLOAT8E4M3FNUZ_to_FLOAT_model",
"node_test_castlike_FLOAT8E4M3FN_to_FLOAT_expanded_model",
"node_test_castlike_FLOAT8E4M3FN_to_FLOAT_model",
"node_test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_expanded_model",
"node_test_castlike_FLOAT8E5M2FNUZ_to_FLOAT_model",
"node_test_castlike_FLOAT8E5M2_to_FLOAT_expanded_model",
"node_test_castlike_FLOAT8E5M2_to_FLOAT_model",
"node_test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_expanded_model",
"node_test_castlike_FLOAT_to_FLOAT8E4M3FNUZ_model",
"node_test_castlike_FLOAT_to_FLOAT8E4M3FN_expanded_model",
"node_test_castlike_FLOAT_to_FLOAT8E4M3FN_model",
"node_test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_expanded_model",
"node_test_castlike_FLOAT_to_FLOAT8E5M2FNUZ_model",
"node_test_castlike_FLOAT_to_FLOAT8E5M2_expanded_model",
"node_test_castlike_FLOAT_to_FLOAT8E5M2_model",
"node_test_castlike_FLOAT_to_STRING_expanded_model",
"node_test_castlike_FLOAT_to_STRING_model",
"node_test_castlike_STRING_to_FLOAT_expanded_model",
"node_test_castlike_STRING_to_FLOAT_model",
"node_test_center_crop_pad_crop_axes_chw_expanded_model",
"node_test_center_crop_pad_crop_axes_hwc_expanded_model",
"node_test_center_crop_pad_crop_negative_axes_hwc_expanded_model",
"node_test_clip_default_inbounds_model",
"node_test_clip_default_int8_inbounds_model",
"node_test_clip_default_int8_max_model",
"node_test_clip_default_max_model",
"node_test_constantofshape_float_ones_model",
"node_test_constantofshape_int_shape_zero_model",
"node_test_constantofshape_int_zeros_model",
"node_test_dequantizelinear_e4m3fn_model",
"node_test_dequantizelinear_e4m3fn_zero_point_model",
"node_test_dequantizelinear_e5m2_model",
"node_test_dft_axis_model",
"node_test_dft_inverse_model",
"node_test_dft_model",
"node_test_equal_string_broadcast_model",
"node_test_equal_string_model",
"node_test_gru_defaults_model",
"node_test_gru_seq_length_model",
"node_test_gru_with_initial_bias_model",
"node_test_identity_opt_model",
"node_test_identity_sequence_model",
"node_test_if_model",
"node_test_if_opt_model",
"node_test_if_seq_model",
"node_test_layer_normalization_2d_axis0_expanded_model",
"node_test_layer_normalization_2d_axis0_expanded_ver18_model",
"node_test_layer_normalization_2d_axis1_expanded_model",
"node_test_layer_normalization_2d_axis1_expanded_ver18_model",
"node_test_layer_normalization_2d_axis_negative_1_expanded_model",
"node_test_layer_normalization_2d_axis_negative_1_expanded_ver18_model",
"node_test_layer_normalization_2d_axis_negative_2_expanded_model",
"node_test_layer_normalization_2d_axis_negative_2_expanded_ver18_model",
"node_test_layer_normalization_3d_axis0_epsilon_expanded_model",
"node_test_layer_normalization_3d_axis0_epsilon_expanded_ver18_model",
"node_test_layer_normalization_3d_axis1_epsilon_expanded_model",
"node_test_layer_normalization_3d_axis1_epsilon_expanded_ver18_model",
"node_test_layer_normalization_3d_axis2_epsilon_expanded_model",
"node_test_layer_normalization_3d_axis2_epsilon_expanded_ver18_model",
"node_test_layer_normalization_3d_axis_negative_1_epsilon_expanded_model",
"node_test_layer_normalization_3d_axis_negative_1_epsilon_expanded_ver18_model",
"node_test_layer_normalization_3d_axis_negative_2_epsilon_expanded_model",
"node_test_layer_normalization_3d_axis_negative_2_epsilon_expanded_ver18_model",
"node_test_layer_normalization_3d_axis_negative_3_epsilon_expanded_model",
"node_test_layer_normalization_3d_axis_negative_3_epsilon_expanded_ver18_model",
"node_test_layer_normalization_4d_axis0_expanded_model",
"node_test_layer_normalization_4d_axis0_expanded_ver18_model",
"node_test_layer_normalization_4d_axis1_expanded_model",
"node_test_layer_normalization_4d_axis1_expanded_ver18_model",
"node_test_layer_normalization_4d_axis2_expanded_model",
"node_test_layer_normalization_4d_axis2_expanded_ver18_model",
"node_test_layer_normalization_4d_axis3_expanded_model",
"node_test_layer_normalization_4d_axis3_expanded_ver18_model",
"node_test_layer_normalization_4d_axis_negative_1_expanded_model",
"node_test_layer_normalization_4d_axis_negative_1_expanded_ver18_model",
"node_test_layer_normalization_4d_axis_negative_2_expanded_model",
"node_test_layer_normalization_4d_axis_negative_2_expanded_ver18_model",
"node_test_layer_normalization_4d_axis_negative_3_expanded_model",
"node_test_layer_normalization_4d_axis_negative_3_expanded_ver18_model",
"node_test_layer_normalization_4d_axis_negative_4_expanded_model",
"node_test_layer_normalization_4d_axis_negative_4_expanded_ver18_model",
"node_test_layer_normalization_default_axis_expanded_model",
"node_test_layer_normalization_default_axis_expanded_ver18_model",
"node_test_loop11_model",
"node_test_loop13_seq_model",
"node_test_loop16_seq_none_model",
"node_test_lstm_defaults_model",
"node_test_lstm_with_initial_bias_model",
"node_test_lstm_with_peepholes_model",
"node_test_optional_get_element_optional_sequence_model",
"node_test_optional_get_element_optional_tensor_model",
"node_test_optional_get_element_sequence_model",
"node_test_optional_has_element_empty_no_input_name_optional_input_model",
"node_test_optional_has_element_empty_no_input_name_tensor_input_model",
"node_test_optional_has_element_empty_optional_input_model",
"node_test_optional_has_element_optional_input_model",
"node_test_optional_has_element_tensor_input_model",
"node_test_quantizelinear_e4m3fn_model",
"node_test_quantizelinear_e5m2_model",
"node_test_range_float_type_positive_delta_expanded_model",
"node_test_range_int32_type_negative_delta_expanded_model",
"node_test_regex_full_match_basic_model",
"node_test_regex_full_match_email_domain_model",
"node_test_regex_full_match_empty_model",
"node_test_resize_downsample_scales_cubic_A_n0p5_exclude_outside_model",
"node_test_resize_downsample_scales_cubic_align_corners_model",
"node_test_resize_downsample_scales_cubic_antialias_model",
"node_test_resize_downsample_scales_cubic_model",
"node_test_resize_downsample_scales_linear_align_corners_model",
"node_test_resize_downsample_scales_linear_antialias_model",
"node_test_resize_downsample_scales_linear_half_pixel_symmetric_model",
"node_test_resize_downsample_scales_linear_model",
"node_test_resize_downsample_scales_nearest_model",
"node_test_resize_downsample_sizes_cubic_antialias_model",
"node_test_resize_downsample_sizes_cubic_model",
"node_test_resize_downsample_sizes_linear_antialias_model",
"node_test_resize_downsample_sizes_linear_pytorch_half_pixel_model",
"node_test_resize_downsample_sizes_nearest_model",
"node_test_resize_downsample_sizes_nearest_not_larger_model",
"node_test_resize_downsample_sizes_nearest_not_smaller_model",
"node_test_resize_tf_crop_and_resize_axes_2_3_model",
"node_test_resize_tf_crop_and_resize_axes_3_2_model",
"node_test_resize_tf_crop_and_resize_model",
"node_test_resize_upsample_scales_cubic_A_n0p5_exclude_outside_model",
"node_test_resize_upsample_scales_cubic_align_corners_model",
"node_test_resize_upsample_scales_cubic_asymmetric_model",
"node_test_resize_upsample_scales_cubic_model",
"node_test_resize_upsample_scales_linear_align_corners_model",
"node_test_resize_upsample_scales_linear_half_pixel_symmetric_model",
"node_test_resize_upsample_scales_linear_model",
"node_test_resize_upsample_scales_nearest_axes_2_3_model",
"node_test_resize_upsample_scales_nearest_axes_3_2_model",
"node_test_resize_upsample_scales_nearest_model",
"node_test_resize_upsample_sizes_cubic_model",
"node_test_resize_upsample_sizes_nearest_axes_2_3_model",
"node_test_resize_upsample_sizes_nearest_axes_3_2_model",
"node_test_resize_upsample_sizes_nearest_ceil_half_pixel_model",
"node_test_resize_upsample_sizes_nearest_floor_align_corners_model",
"node_test_resize_upsample_sizes_nearest_model",
"node_test_resize_upsample_sizes_nearest_not_larger_model",
"node_test_resize_upsample_sizes_nearest_round_prefer_ceil_asymmetric_model",
"node_test_rnn_seq_length_model",
"node_test_scan9_sum_model",
"node_test_scan_sum_model",
"node_test_sequence_insert_at_back_model",
"node_test_sequence_insert_at_front_model",
"node_test_sequence_map_add_1_sequence_1_tensor_expanded_model",
"node_test_sequence_map_add_1_sequence_1_tensor_model",
"node_test_sequence_map_add_2_sequences_expanded_model",
"node_test_sequence_map_add_2_sequences_model",
"node_test_sequence_map_extract_shapes_expanded_model",
"node_test_sequence_map_extract_shapes_model",
"node_test_sequence_map_identity_1_sequence_1_tensor_expanded_model",
"node_test_sequence_map_identity_1_sequence_1_tensor_model",
"node_test_sequence_map_identity_1_sequence_expanded_model",
"node_test_sequence_map_identity_1_sequence_model",
"node_test_sequence_map_identity_2_sequences_expanded_model",
"node_test_sequence_map_identity_2_sequences_model",
"node_test_simple_rnn_defaults_model",
"node_test_simple_rnn_with_initial_bias_model",
"node_test_split_to_sequence_1_model",
"node_test_split_to_sequence_2_model",
"node_test_split_to_sequence_nokeepdims_model",
"node_test_stft_model",
"node_test_string_concat_broadcasting_model",
"node_test_string_concat_empty_string_model",
"node_test_string_concat_model",
"node_test_string_concat_utf8_model",
"node_test_string_concat_zero_dimensional_model",
"node_test_string_split_basic_model",
"node_test_string_split_consecutive_delimiters_model",
"node_test_string_split_empty_string_delimiter_model",
"node_test_string_split_empty_tensor_model",
"node_test_string_split_maxsplit_model",
"node_test_string_split_no_delimiter_model",
"node_test_strnormalizer_export_monday_casesensintive_lower_model",
"node_test_strnormalizer_export_monday_casesensintive_nochangecase_model",
"node_test_strnormalizer_export_monday_casesensintive_upper_model",
"node_test_strnormalizer_export_monday_empty_output_model",
"node_test_strnormalizer_export_monday_insensintive_upper_twodim_model",
"node_test_strnormalizer_nostopwords_nochangecase_model",
"simple_test_sequence_model1_model",
"simple_test_sequence_model2_model",
"simple_test_sequence_model3_model",
"simple_test_sequence_model4_model",
"simple_test_sequence_model5_model",
"simple_test_sequence_model6_model",
"simple_test_sequence_model7_model",
"simple_test_sequence_model8_model",
"simple_test_strnorm_model_monday_casesensintive_lower_model",
"simple_test_strnorm_model_monday_casesensintive_nochangecase_model",
"simple_test_strnorm_model_monday_casesensintive_upper_model",
"simple_test_strnorm_model_monday_empty_output_model",
"simple_test_strnorm_model_monday_insensintive_upper_twodim_model",
"simple_test_strnorm_model_nostopwords_nochangecase_model",
]
class ImportSmokeTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.unexpected_failure_count = 0
ImportSmokeTest.actual_failures = []
@classmethod
def tearDownClass(cls):
if cls.unexpected_failure_count:
# Print a helpful message with copy-paste XFAIL def.
failure_report_path = OUTPUT_PATH / "import_smoke_test_report.txt"
print(
"Unexpected failures. Writing copy/paste report to:",
failure_report_path,
)
with open(failure_report_path, "wt") as f:
lines = [f' "{s}",' for s in ImportSmokeTest.actual_failures]
print(
f"Unexpected failures in the following. Copy/paste to update `TEST_CAST_XFAILS`:",
file=f,
)
print(f"TEST_CAST_XFAILS = [", file=f)
[print(l, file=f) for l in lines]
print(f"]", file=f)
ImportSmokeTest.actual_failures.clear()
def load_onnx_model(self, file_path: Path) -> onnx.ModelProto:
raw_model = onnx.load(file_path)
try:
inferred_model = onnx.shape_inference.infer_shapes(raw_model)
except onnx.onnx_cpp2py_export.shape_inference.InferenceError as e:
print("WARNING: Shape inference failure (skipping test):", e)
self.skipTest(reason="shape inference failure")
# inferred_model = raw_model
return inferred_model
def run_import_test(self, norm_name: str, rel_path: str):
context = ir.Context()
configure_context(context)
model_info = onnx_importer.ModelInfo(
self.load_onnx_model(ONNX_TEST_DATA_DIR / rel_path),
)
m = model_info.create_module(context=context)
try:
imp = onnx_importer.NodeImporter.define_function(model_info.main_graph, m)
imp.import_all()
m.verify()
finally:
# Use a ".txt" extension to avoid lit test discovery.
with open(OUTPUT_PATH / f"{norm_name}.mlir", "wt") as f:
print(m.get_asm(), file=f)
def testExists(self):
# We expect a lot of test cases. Die if not the case (i.e. if paths change
# or something).
self.assertGreater(len(ONNX_REL_PATHS), 10)
# Generate test methods for each onnx file.
for _rel_path in ONNX_REL_PATHS:
def attach_test(rel_path):
norm_name = rel_path.removesuffix(".onnx").replace("/", "_")
def test_method(self: ImportSmokeTest):
try:
self.run_import_test(norm_name, rel_path)
except onnx_importer.OnnxImportError as e:
# All legitimate failures should be caught and reported
# as an OnnxImportError.
ImportSmokeTest.actual_failures.append(norm_name)
if norm_name not in TEST_CAST_XFAILS:
ImportSmokeTest.unexpected_failure_count += 1
raise e
test_method.__name__ = f"test_{norm_name}"
if norm_name in TEST_CAST_XFAILS:
test_method = unittest.expectedFailure(test_method)
setattr(ImportSmokeTest, test_method.__name__, test_method)
attach_test(_rel_path)
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
unittest.main()

View File

@ -0,0 +1,5 @@
try:
import onnx
except ModuleNotFoundError:
print("Skipping onnx tests.. no onnx")
config.unsupported = True