With the recent LLVM integrate and changes from
https://github.com/llvm/llvm-project/pull/78260, we hit this build error
in Stablehlo (which is quite old).
```
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1020:14: error: no member named 'startRootUpdate' in 'mlir::PatternRewriter'
    rewriter.startRootUpdate(op);
    ~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1026:16: error: no member named 'finalizeRootUpdate' in 'mlir::PatternRewriter'
      rewriter.finalizeRootUpdate(op);
      ~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1029:16: error: no member named 'cancelRootUpdate' in 'mlir::PatternRewriter'
      rewriter.cancelRootUpdate(op);
      ~~~~~~~~ ^
external/stablehlo/stablehlo/transforms/StablehloRefineShapes.cpp:1108:14: error: no member named 'updateRootInPlace' in 'mlir::PatternRewriter'
    rewriter.updateRootInPlace(op->getParentOp(), [&]() { return; });
    ~~~~~~~~ ^
4 errors generated.
Target @torch-mlir//:torch-mlir-opt failed to build
```

I'm still puzzled as to how this didn't fail with the CMake merge gating
CI (do we not test Stablehlo builds/tests?). In any case, bumping our
submodule to https://github.com/openxla/stablehlo/pull/1918 fixes it.

It exposes a new failing lit test in TorchToStablehlo though, that I
have looped stablehlo developers into
([here](https://discord.com/channels/999073994483433573/999074539138990131/1201235845391331419)).
```
bazel run @torch-mlir//test/Conversion:TorchToStablehlo/scatter.mlir.test 

...external/torch-mlir/test/Conversion/TorchToStablehlo/scatter.mlir
within split at <stdin>:1 offset :33:8: error: unexpected error: Expects non-empty reduction block for type inference                                                                               
  %0 = torch.aten.scatter.src %arg0, %int0, %arg1, %arg2 : !torch.vtensor<[?,?],si64>, !torch.int, !torch.vtensor<[?,?],si64>, !torch.vtensor<[?,?],si64> -> !torch.vtensor<[?,?],si64>             
       ^                                                                                                                                                                                            
LLVM ERROR: Failed to infer result type(s).               
```

Bazel CI:
https://github.com/sjain-stanford/torch-mlir/actions/runs/7732673480/job/21083102228
pull/2847/head
Sambhav Jain 2024-01-31 14:21:17 -08:00 committed by GitHub
parent 54e258792c
commit 8a17c98b74
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 61 additions and 109 deletions

2
externals/stablehlo vendored

@ -1 +1 @@
Subproject commit ab709fe48de88c67717abfbd7ef17425eb95ddaf Subproject commit fd52182f76cadb82f2064fe5fc49a4fb4347a826

View File

@ -377,12 +377,12 @@ public:
if (!skipMultiplyAlpha(op.getAlpha())) { if (!skipMultiplyAlpha(op.getAlpha())) {
Value alpha = hlo::scalarToStablehloTensor(rewriter, op, Value alpha = hlo::scalarToStablehloTensor(rewriter, op,
adaptor.getAlpha(), outElemTy); adaptor.getAlpha(), outElemTy);
DenseIntElementsAttr bcastDimensions; DenseI64ArrayAttr bcastDimensions;
rhs = rewriter.create<chlo::BroadcastMulOp>(op->getLoc(), rhs, alpha, rhs = rewriter.create<chlo::BroadcastMulOp>(op->getLoc(), rhs, alpha,
bcastDimensions); bcastDimensions);
} }
DenseIntElementsAttr bcastDimensions; DenseI64ArrayAttr bcastDimensions;
rewriter.replaceOpWithNewOp<ChloOpT>(op, outType, lhs, rhs, rewriter.replaceOpWithNewOp<ChloOpT>(op, outType, lhs, rhs,
bcastDimensions); bcastDimensions);
return success(); return success();
@ -424,7 +424,7 @@ public:
rhs = hlo::scalarToStablehloTensor(rewriter, op, adaptor.getOther(), rhs = hlo::scalarToStablehloTensor(rewriter, op, adaptor.getOther(),
outElemTy); outElemTy);
} }
DenseIntElementsAttr bcastDimensions; DenseI64ArrayAttr bcastDimensions;
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outType); lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outType);
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outType); rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outType);
auto loc = op.getLoc(); auto loc = op.getLoc();
@ -542,7 +542,7 @@ public:
} else { } else {
return op.emitError("operator haven't been supported"); return op.emitError("operator haven't been supported");
} }
DenseIntElementsAttr bcastDimensions; DenseI64ArrayAttr bcastDimensions;
rewriter.replaceOpWithNewOp<chlo::BroadcastCompareOp>( rewriter.replaceOpWithNewOp<chlo::BroadcastCompareOp>(
op, outType, lhs, rhs, bcastDimensions, compareDirectionAttr, op, outType, lhs, rhs, bcastDimensions, compareDirectionAttr,
compareTypeAttr); compareTypeAttr);
@ -570,7 +570,7 @@ public:
Value rhs = Value rhs =
hlo::promoteType(rewriter, op.getLoc(), adaptor.getOther(), outType); hlo::promoteType(rewriter, op.getLoc(), adaptor.getOther(), outType);
DenseIntElementsAttr bcastDimensions; DenseI64ArrayAttr bcastDimensions;
rewriter.replaceOpWithNewOp<ChloOpT>(op, outType, lhs, rhs, rewriter.replaceOpWithNewOp<ChloOpT>(op, outType, lhs, rhs,
bcastDimensions); bcastDimensions);
return success(); return success();
@ -757,7 +757,7 @@ LogicalResult ConvertAtenOp<AtenBroadcastToOp>::matchAndRewrite(
llvm::to_vector<4>(llvm::seq<int64_t>(leadingRank, totalRank)); llvm::to_vector<4>(llvm::seq<int64_t>(leadingRank, totalRank));
rewriter.replaceOpWithNewOp<stablehlo::DynamicBroadcastInDimOp>( rewriter.replaceOpWithNewOp<stablehlo::DynamicBroadcastInDimOp>(
op, outType, self, bcastShapeTensor, op, outType, self, bcastShapeTensor,
rewriter.getI64TensorAttr(dimensionNumbers)); rewriter.getDenseI64ArrayAttr(dimensionNumbers));
} }
return success(); return success();
} }
@ -887,7 +887,7 @@ LogicalResult ConvertAtenOp<AtenPowTensorScalarOp>::matchAndRewrite(
if (!rhsType) { if (!rhsType) {
rhs = hlo::scalarToStablehloTensor(rewriter, op, rhs, outElemTy); rhs = hlo::scalarToStablehloTensor(rewriter, op, rhs, outElemTy);
} }
DenseIntElementsAttr bcastDimensions; DenseI64ArrayAttr bcastDimensions;
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outType); lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outType);
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outType); rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outType);
auto loc = op.getLoc(); auto loc = op.getLoc();
@ -1478,7 +1478,7 @@ LogicalResult ConvertAtenOp<AtenArangeStartStepOp>::matchAndRewrite(
Value window = Value window =
rewriter.create<stablehlo::DynamicIotaOp>(loc, outType, resultLength, 0); rewriter.create<stablehlo::DynamicIotaOp>(loc, outType, resultLength, 0);
DenseIntElementsAttr broadcastDimensions; DenseI64ArrayAttr broadcastDimensions;
Value mulOut = rewriter.create<chlo::BroadcastMulOp>(loc, window, step, Value mulOut = rewriter.create<chlo::BroadcastMulOp>(loc, window, step,
broadcastDimensions); broadcastDimensions);
rewriter.replaceOpWithNewOp<chlo::BroadcastAddOp>(op, mulOut, start, rewriter.replaceOpWithNewOp<chlo::BroadcastAddOp>(op, mulOut, start,
@ -1721,7 +1721,7 @@ LogicalResult ConvertAtenOp<AtenFillScalarOp>::matchAndRewrite(
rewriter.create<shape::ShapeOfOp>(op->getLoc(), adaptor.getSelf()); rewriter.create<shape::ShapeOfOp>(op->getLoc(), adaptor.getSelf());
Value bcastScalar = rewriter.create<stablehlo::DynamicBroadcastInDimOp>( Value bcastScalar = rewriter.create<stablehlo::DynamicBroadcastInDimOp>(
op->getLoc(), outType, scalarTensor, shapeTensor, op->getLoc(), outType, scalarTensor, shapeTensor,
rewriter.getI64TensorAttr({})); rewriter.getDenseI64ArrayAttr({}));
rewriter.replaceOp(op, bcastScalar); rewriter.replaceOp(op, bcastScalar);
return success(); return success();
} }

View File

@ -334,7 +334,8 @@ LogicalResult ConvertAtenOp<AtenEmbeddingBagPaddingIdxOp>::matchAndRewrite(
return failure(); return failure();
auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>( auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>(
op.getLoc(), gatherOutput, initValue, rewriter.getI64TensorAttr({0})); op.getLoc(), gatherOutput, initValue, rewriter.getDenseI64ArrayAttr({0}),
elementTy);
Region &region = stablehloReduceOp.getBody(); Region &region = stablehloReduceOp.getBody();
Block &block = region.emplaceBlock(); Block &block = region.emplaceBlock();
@ -510,7 +511,7 @@ LogicalResult ConvertAtenOp<AtenGatherOp>::matchAndRewrite(
rewriter.replaceOpWithNewOp<stablehlo::GatherOp>( rewriter.replaceOpWithNewOp<stablehlo::GatherOp>(
op, input, gatherIndicies, dimsAttr, op, input, gatherIndicies, dimsAttr,
rewriter.getI64TensorAttr(sliceSizes)); rewriter.getDenseI64ArrayAttr(sliceSizes));
return success(); return success();
} }
@ -666,7 +667,8 @@ LogicalResult ConvertAtenOp<AtenScatterSrcOp>::matchAndRewrite(
/*indexVectorDim=*/indexVecDim); /*indexVectorDim=*/indexVecDim);
auto stablehloScatterOp = rewriter.create<stablehlo::ScatterOp>( auto stablehloScatterOp = rewriter.create<stablehlo::ScatterOp>(
loc, input, scatterIndicies, src, scatterDimensionNumbers, false, false); loc, inputType, input, scatterIndicies, src, scatterDimensionNumbers,
false, false);
// config update computation function: just return the element from src. // config update computation function: just return the element from src.
Block &block = stablehloScatterOp.getUpdateComputation().emplaceBlock(); Block &block = stablehloScatterOp.getUpdateComputation().emplaceBlock();
@ -833,7 +835,7 @@ LogicalResult ConvertAtenOp<AtenIndexTensorHackedTwinOp>::matchAndRewrite(
rewriter.replaceOpWithNewOp<stablehlo::GatherOp>( rewriter.replaceOpWithNewOp<stablehlo::GatherOp>(
op, resultType, input, finalIndexTensor, dimsAttr, op, resultType, input, finalIndexTensor, dimsAttr,
rewriter.getI64TensorAttr(sliceSizes)); rewriter.getDenseI64ArrayAttr(sliceSizes));
return success(); return success();
} }

View File

@ -39,10 +39,7 @@ Value getBroadcastTensor(PatternRewriter &rewriter, Operation *op, Value tensor,
RankedTensorType outTy = RankedTensorType outTy =
RankedTensorType::get(shape, tensorTy.getElementType()); RankedTensorType::get(shape, tensorTy.getElementType());
RankedTensorType attrTy = auto broadcastAttr = rewriter.getDenseI64ArrayAttr(broadcastDims);
RankedTensorType::get({static_cast<int64_t>(broadcastDims.size())},
rewriter.getIntegerType(64));
auto broadcastAttr = DenseIntElementsAttr::get(attrTy, broadcastDims);
auto broadcast = rewriter.create<stablehlo::DynamicBroadcastInDimOp>( auto broadcast = rewriter.create<stablehlo::DynamicBroadcastInDimOp>(
loc, outTy, tensor, stablehloShape, broadcastAttr); loc, outTy, tensor, stablehloShape, broadcastAttr);
@ -549,8 +546,7 @@ public:
// Prepare for transposed convolution // Prepare for transposed convolution
SmallVector<int64_t> stablehloStrideVec(nSpatialDims, 1); SmallVector<int64_t> stablehloStrideVec(nSpatialDims, 1);
DenseIntElementsAttr stablehloStride = auto stablehloStride = rewriter.getDenseI64ArrayAttr(stablehloStrideVec);
rewriter.getI64TensorAttr(stablehloStrideVec);
SmallVector<int64_t> stablehloPaddingVec(nSpatialDims * 2, 0); SmallVector<int64_t> stablehloPaddingVec(nSpatialDims * 2, 0);
for (int i = 0; i < nSpatialDims; ++i) { for (int i = 0; i < nSpatialDims; ++i) {
int64_t padInt = dilation[i] * (weightShape[i + 2] - 1) - padding[i]; int64_t padInt = dilation[i] * (weightShape[i + 2] - 1) - padding[i];
@ -563,15 +559,15 @@ public:
stablehloPaddingVec); stablehloPaddingVec);
SmallVector<int64_t> stablehloLhsDilationVec(nSpatialDims); SmallVector<int64_t> stablehloLhsDilationVec(nSpatialDims);
std::copy(stride.begin(), stride.end(), stablehloLhsDilationVec.begin()); std::copy(stride.begin(), stride.end(), stablehloLhsDilationVec.begin());
DenseIntElementsAttr stablehloLhsDilation = auto stablehloLhsDilation =
rewriter.getI64TensorAttr(stablehloLhsDilationVec); rewriter.getDenseI64ArrayAttr(stablehloLhsDilationVec);
SmallVector<int64_t> stablehloRhsDilationVec(nSpatialDims); SmallVector<int64_t> stablehloRhsDilationVec(nSpatialDims);
std::copy(dilation.begin(), dilation.end(), std::copy(dilation.begin(), dilation.end(),
stablehloRhsDilationVec.begin()); stablehloRhsDilationVec.begin());
DenseIntElementsAttr stablehloRhsDilation = auto stablehloRhsDilation =
rewriter.getI64TensorAttr(stablehloRhsDilationVec); rewriter.getDenseI64ArrayAttr(stablehloRhsDilationVec);
DenseElementsAttr windowReversal; DenseBoolArrayAttr windowReversal;
ArrayAttr precisionConfig; ArrayAttr precisionConfig;
SmallVector<int64_t> spatialDims; SmallVector<int64_t> spatialDims;
@ -614,10 +610,7 @@ public:
int64_t nDims = outType.getRank(); int64_t nDims = outType.getRank();
// Get stablehlo::ConvolutionOp attributes // Get stablehlo::ConvolutionOp attributes
DenseIntElementsAttr stablehloWindowStride = DenseIntElementsAttr::get( auto stablehloWindowStride = rewriter.getDenseI64ArrayAttr(stride);
RankedTensorType::get({static_cast<long int>(stride.size())},
rewriter.getI64Type()),
stride);
std::vector<int64_t> stablehloPaddingVec; std::vector<int64_t> stablehloPaddingVec;
for (size_t i = 0; i < padding.size(); i++) { for (size_t i = 0; i < padding.size(); i++) {
stablehloPaddingVec.emplace_back(padding[i]); stablehloPaddingVec.emplace_back(padding[i]);
@ -628,10 +621,7 @@ public:
{static_cast<long int>(padding.size()), static_cast<long int>(2)}, {static_cast<long int>(padding.size()), static_cast<long int>(2)},
rewriter.getI64Type()), rewriter.getI64Type()),
stablehloPaddingVec); stablehloPaddingVec);
DenseIntElementsAttr stablehloRhsDilation = DenseIntElementsAttr::get( auto stablehloRhsDilation = rewriter.getDenseI64ArrayAttr(dilation);
RankedTensorType::get({static_cast<long int>(dilation.size())},
rewriter.getI64Type()),
dilation);
SmallVector<int64_t> spatialDimensions; SmallVector<int64_t> spatialDimensions;
for (int64_t i = 2; i < nDims; i++) { for (int64_t i = 2; i < nDims; i++) {
spatialDimensions.emplace_back(i); spatialDimensions.emplace_back(i);
@ -648,8 +638,8 @@ public:
/*outputSpatialDimensions=*/spatialDimensions); /*outputSpatialDimensions=*/spatialDimensions);
// stablehlo::ConvolutionOp's optional attributes, leave them as default // stablehlo::ConvolutionOp's optional attributes, leave them as default
DenseIntElementsAttr stablehloLhsDilation; DenseI64ArrayAttr stablehloLhsDilation;
DenseElementsAttr windowReversal; DenseBoolArrayAttr windowReversal;
ArrayAttr precisionConfig; ArrayAttr precisionConfig;
auto stablehloConvOp = rewriter.create<stablehlo::ConvolutionOp>( auto stablehloConvOp = rewriter.create<stablehlo::ConvolutionOp>(
@ -781,7 +771,7 @@ public:
options.dimSizeIndexBits); options.dimSizeIndexBits);
bias = hlo::promoteType(rewriter, op.getLoc(), bias, outTy); bias = hlo::promoteType(rewriter, op.getLoc(), bias, outTy);
DenseIntElementsAttr bcastDimensions; DenseI64ArrayAttr bcastDimensions;
rewriter.replaceOpWithNewOp<chlo::BroadcastAddOp>( rewriter.replaceOpWithNewOp<chlo::BroadcastAddOp>(
op, outTy, stablehloConvResult, bias, bcastDimensions); op, outTy, stablehloConvResult, bias, bcastDimensions);
return success(); return success();

View File

@ -136,19 +136,10 @@ LogicalResult ConvertAtenOp<AtenMaxPool2dOp>::matchAndRewrite(
stablehloPadding[stablehloPadding.size() - 2] = padding[1]; stablehloPadding[stablehloPadding.size() - 2] = padding[1];
stablehloPadding[stablehloPadding.size() - 1] = padding[1]; stablehloPadding[stablehloPadding.size() - 1] = padding[1];
DenseIntElementsAttr windowDimensions = DenseIntElementsAttr::get( auto windowDimensions = rewriter.getDenseI64ArrayAttr(stablehloKernelSize);
RankedTensorType::get({static_cast<int64_t>(stablehloKernelSize.size())}, auto windowStrides = rewriter.getDenseI64ArrayAttr(stablehloStride);
rewriter.getI64Type()), DenseI64ArrayAttr baseDilations;
stablehloKernelSize); auto windowDilations = rewriter.getDenseI64ArrayAttr(stablehloDilation);
DenseIntElementsAttr windowStrides = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(stablehloStride.size())},
rewriter.getI64Type()),
stablehloStride);
DenseIntElementsAttr baseDilations;
DenseIntElementsAttr windowDilations = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(stablehloDilation.size())},
rewriter.getI64Type()),
stablehloDilation);
DenseIntElementsAttr pad = DenseIntElementsAttr::get( DenseIntElementsAttr pad = DenseIntElementsAttr::get(
RankedTensorType::get( RankedTensorType::get(
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)}, {static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},
@ -242,19 +233,10 @@ LogicalResult ConvertAtenOp<AtenMaxPool2dWithIndicesOp>::matchAndRewrite(
stablehloPadding[stablehloPadding.size() - 2] = padding[1]; stablehloPadding[stablehloPadding.size() - 2] = padding[1];
stablehloPadding[stablehloPadding.size() - 1] = padding[1]; stablehloPadding[stablehloPadding.size() - 1] = padding[1];
DenseIntElementsAttr windowDimensions = DenseIntElementsAttr::get( auto windowDimensions = rewriter.getDenseI64ArrayAttr(stablehloKernelSize);
RankedTensorType::get({static_cast<int64_t>(stablehloKernelSize.size())}, auto windowStrides = rewriter.getDenseI64ArrayAttr(stablehloStride);
rewriter.getI64Type()), DenseI64ArrayAttr baseDilations;
stablehloKernelSize); auto windowDilations = rewriter.getDenseI64ArrayAttr(stablehloDilation);
DenseIntElementsAttr windowStrides = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(stablehloStride.size())},
rewriter.getI64Type()),
stablehloStride);
DenseIntElementsAttr baseDilations;
DenseIntElementsAttr windowDilations = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(stablehloDilation.size())},
rewriter.getI64Type()),
stablehloDilation);
DenseIntElementsAttr pad = DenseIntElementsAttr::get( DenseIntElementsAttr pad = DenseIntElementsAttr::get(
RankedTensorType::get( RankedTensorType::get(
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)}, {static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},
@ -453,20 +435,10 @@ public:
Value initVal = Value initVal =
createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter); createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);
DenseIntElementsAttr windowDimensions = DenseIntElementsAttr::get( auto windowDimensions = rewriter.getDenseI64ArrayAttr(stablehloKernelSize);
RankedTensorType::get( auto windowStrides = rewriter.getDenseI64ArrayAttr(stablehloStride);
{static_cast<int64_t>(stablehloKernelSize.size())}, DenseI64ArrayAttr baseDilations;
rewriter.getI64Type()), auto windowDilations = rewriter.getDenseI64ArrayAttr(stablehloDilation);
stablehloKernelSize);
DenseIntElementsAttr windowStrides = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(stablehloStride.size())},
rewriter.getI64Type()),
stablehloStride);
DenseIntElementsAttr baseDilations;
DenseIntElementsAttr windowDilations = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(stablehloDilation.size())},
rewriter.getI64Type()),
stablehloDilation);
DenseIntElementsAttr pad = DenseIntElementsAttr::get( DenseIntElementsAttr pad = DenseIntElementsAttr::get(
RankedTensorType::get( RankedTensorType::get(
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)}, {static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},
@ -508,7 +480,7 @@ public:
.value(); .value();
} }
divisor = hlo::promoteType(rewriter, op.getLoc(), divisor, outTy); divisor = hlo::promoteType(rewriter, op.getLoc(), divisor, outTy);
DenseIntElementsAttr bcastDimensions; DenseI64ArrayAttr bcastDimensions;
rewriter.replaceOpWithNewOp<mlir::chlo::BroadcastDivOp>( rewriter.replaceOpWithNewOp<mlir::chlo::BroadcastDivOp>(
op, outTy, reduceWindowSum.getResult(0), divisor, bcastDimensions); op, outTy, reduceWindowSum.getResult(0), divisor, bcastDimensions);
return success(); return success();
@ -528,7 +500,7 @@ public:
windowSizeConst = rewriter.create<stablehlo::DynamicBroadcastInDimOp>( windowSizeConst = rewriter.create<stablehlo::DynamicBroadcastInDimOp>(
op->getLoc(), op->getLoc(),
RankedTensorType::get(inputTy.getShape(), outTy.getElementType()), RankedTensorType::get(inputTy.getShape(), outTy.getElementType()),
windowSizeConst, inputShapeTensor, rewriter.getI64TensorAttr({})); windowSizeConst, inputShapeTensor, rewriter.getDenseI64ArrayAttr({}));
Value zero = createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter); Value zero = createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);
auto reduceWindowSize = rewriter.create<stablehlo::ReduceWindowOp>( auto reduceWindowSize = rewriter.create<stablehlo::ReduceWindowOp>(
@ -599,19 +571,10 @@ LogicalResult ConvertAtenOp<AtenCumsumOp>::matchAndRewrite(
SmallVector<int64_t> stablehloPadding(inputRank * 2, 0); SmallVector<int64_t> stablehloPadding(inputRank * 2, 0);
stablehloPadding[dim * 2] = inputShape[dim] - 1; stablehloPadding[dim * 2] = inputShape[dim] - 1;
DenseIntElementsAttr windowDimensions = DenseIntElementsAttr::get( auto windowDimensions = rewriter.getDenseI64ArrayAttr(stablehloKernelSize);
RankedTensorType::get({static_cast<int64_t>(stablehloKernelSize.size())}, auto windowStrides = rewriter.getDenseI64ArrayAttr(stablehloStride);
rewriter.getI64Type()), DenseI64ArrayAttr baseDilations;
stablehloKernelSize); auto windowDilations = rewriter.getDenseI64ArrayAttr(stablehloDilation);
DenseIntElementsAttr windowStrides = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(stablehloStride.size())},
rewriter.getI64Type()),
stablehloStride);
DenseIntElementsAttr baseDilations;
DenseIntElementsAttr windowDilations = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<int64_t>(stablehloDilation.size())},
rewriter.getI64Type()),
stablehloDilation);
DenseIntElementsAttr pad = DenseIntElementsAttr::get( DenseIntElementsAttr pad = DenseIntElementsAttr::get(
RankedTensorType::get( RankedTensorType::get(
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)}, {static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},

View File

@ -130,7 +130,7 @@ getMaxInDim(ConversionPatternRewriter &rewriter, Operation *op, Value &input,
initValue, initValue,
initIndex, initIndex,
}, },
rewriter.getI64TensorAttr(dim)); rewriter.getDenseI64ArrayAttr(dim));
Block &block = stablehloReduceOp.getBody().emplaceBlock(); Block &block = stablehloReduceOp.getBody().emplaceBlock();
@ -412,7 +412,7 @@ LogicalResult ConvertAtenReductionOp<AtenSumOp>::matchAndRewrite(
llvm::sort(dims.begin(), dims.end()); llvm::sort(dims.begin(), dims.end());
auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>( auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>(
op.getLoc(), input, initValue, rewriter.getI64TensorAttr(dims)); op.getLoc(), input, initValue, rewriter.getDenseI64ArrayAttr(dims));
Block &block = stablehloReduceOp.getBody().emplaceBlock(); Block &block = stablehloReduceOp.getBody().emplaceBlock();
auto blockArgumentTy = RankedTensorType::get({}, inputTy.getElementType()); auto blockArgumentTy = RankedTensorType::get({}, inputTy.getElementType());
@ -473,7 +473,7 @@ LogicalResult ConvertAtenReductionOp<AtenMaxOp>::matchAndRewrite(
return failure(); return failure();
llvm::sort(dims.begin(), dims.end()); llvm::sort(dims.begin(), dims.end());
auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>( auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>(
op.getLoc(), input, initValue, rewriter.getI64TensorAttr(dims)); op.getLoc(), input, initValue, rewriter.getDenseI64ArrayAttr(dims));
Block &block = stablehloReduceOp.getBody().emplaceBlock(); Block &block = stablehloReduceOp.getBody().emplaceBlock();
auto blockArgumentTy = RankedTensorType::get({}, inputTy.getElementType()); auto blockArgumentTy = RankedTensorType::get({}, inputTy.getElementType());
@ -535,7 +535,7 @@ LogicalResult ConvertAtenReductionOp<AtenMinOp>::matchAndRewrite(
return failure(); return failure();
llvm::sort(dims.begin(), dims.end()); llvm::sort(dims.begin(), dims.end());
auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>( auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>(
op.getLoc(), input, initValue, rewriter.getI64TensorAttr(dims)); op.getLoc(), input, initValue, rewriter.getDenseI64ArrayAttr(dims));
Block &block = stablehloReduceOp.getBody().emplaceBlock(); Block &block = stablehloReduceOp.getBody().emplaceBlock();
auto blockArgumentTy = RankedTensorType::get({}, inputTy.getElementType()); auto blockArgumentTy = RankedTensorType::get({}, inputTy.getElementType());
@ -625,7 +625,7 @@ LogicalResult ConvertAtenReductionOp<AtenSumDimIntListOp>::matchAndRewrite(
llvm::sort(dims.begin(), dims.end()); llvm::sort(dims.begin(), dims.end());
auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>( auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>(
op.getLoc(), input, initValue, rewriter.getI64TensorAttr(dims)); op.getLoc(), input, initValue, rewriter.getDenseI64ArrayAttr(dims));
Region &region = stablehloReduceOp.getBody(); Region &region = stablehloReduceOp.getBody();
Block &block = region.emplaceBlock(); Block &block = region.emplaceBlock();
@ -729,7 +729,7 @@ LogicalResult ConvertAtenReductionOp<AtenFrobeniusNormDimOp>::matchAndRewrite(
auto reduceOp = rewriter.create<stablehlo::ReduceOp>( auto reduceOp = rewriter.create<stablehlo::ReduceOp>(
op->getLoc(), squareOp.getResult(), initValue, op->getLoc(), squareOp.getResult(), initValue,
rewriter.getI64TensorAttr(dims)); rewriter.getDenseI64ArrayAttr(dims));
Region &region = reduceOp.getBody(); Region &region = reduceOp.getBody();
Block &block = region.emplaceBlock(); Block &block = region.emplaceBlock();
@ -848,7 +848,7 @@ LogicalResult ConvertAtenReductionOp<AtenLinalgVectorNormOp>::matchAndRewrite(
ord, nullptr); ord, nullptr);
auto reduceOp = rewriter.create<stablehlo::ReduceOp>( auto reduceOp = rewriter.create<stablehlo::ReduceOp>(
op->getLoc(), powValue, initValue, rewriter.getI64TensorAttr(dims)); op->getLoc(), powValue, initValue, rewriter.getDenseI64ArrayAttr(dims));
Region &region = reduceOp.getBody(); Region &region = reduceOp.getBody();
Block &block = region.emplaceBlock(); Block &block = region.emplaceBlock();

View File

@ -241,10 +241,7 @@ Value promoteAndBroadcast(ConversionPatternRewriter &rewriter, Value input,
if (!do_bcast) { if (!do_bcast) {
return input; return input;
} }
DenseIntElementsAttr bcast_attr = DenseIntElementsAttr::get( auto bcast_attr = rewriter.getDenseI64ArrayAttr(bcastDims);
RankedTensorType::get({static_cast<long int>(bcastDims.size())},
rewriter.getI64Type()),
bcastDims);
auto bcast_op = rewriter.create<stablehlo::BroadcastInDimOp>( auto bcast_op = rewriter.create<stablehlo::BroadcastInDimOp>(
op->getLoc(), outType, input, bcast_attr); op->getLoc(), outType, input, bcast_attr);
return bcast_op.getResult(); return bcast_op.getResult();
@ -360,7 +357,7 @@ Value getConstantOfShape(PatternRewriter &rewriter, Location loc,
auto constTensor = rewriter.create<stablehlo::ConstantOp>(loc, constAttr); auto constTensor = rewriter.create<stablehlo::ConstantOp>(loc, constAttr);
return rewriter return rewriter
.create<stablehlo::DynamicBroadcastInDimOp>( .create<stablehlo::DynamicBroadcastInDimOp>(
loc, outType, constTensor, shape, rewriter.getI64TensorAttr({})) loc, outType, constTensor, shape, rewriter.getDenseI64ArrayAttr({}))
.getResult(); .getResult();
} }
} // namespace hlo } // namespace hlo

View File

@ -18,7 +18,7 @@
// CHECK: ^bb0(%[[VAL_8:.*]]: tensor<f32>, %[[VAL_9:.*]]: tensor<f32>): // CHECK: ^bb0(%[[VAL_8:.*]]: tensor<f32>, %[[VAL_9:.*]]: tensor<f32>):
// CHECK: %[[VAL_10:.*]] = stablehlo.maximum %[[VAL_8]], %[[VAL_9]] : tensor<f32> // CHECK: %[[VAL_10:.*]] = stablehlo.maximum %[[VAL_8]], %[[VAL_9]] : tensor<f32>
// CHECK: stablehlo.return %[[VAL_10]] : tensor<f32> // CHECK: stablehlo.return %[[VAL_10]] : tensor<f32>
// CHECK: }) {padding = dense<0> : tensor<4x2xi64>, window_dilations = dense<[1, 1, 2, 1]> : tensor<4xi64>, window_dimensions = dense<[1, 1, 2, 2]> : tensor<4xi64>, window_strides = dense<1> : tensor<4xi64>} : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32> // CHECK: }) {padding = dense<0> : tensor<4x2xi64>, window_dilations = array<i64: 1, 1, 2, 1>, window_dimensions = array<i64: 1, 1, 2, 2>, window_strides = array<i64: 1, 1, 1, 1>} : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32>
// CHECK: %[[VAL_11:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor<?x?x?x?xf32> -> !torch.vtensor<[?,?,?,?],f32> // CHECK: %[[VAL_11:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor<?x?x?x?xf32> -> !torch.vtensor<[?,?,?,?],f32>
// CHECK: return %[[VAL_11]] : !torch.vtensor<[?,?,?,?],f32> // CHECK: return %[[VAL_11]] : !torch.vtensor<[?,?,?,?],f32>
func.func @torch.aten.max_pool2d(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> { func.func @torch.aten.max_pool2d(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> {
@ -51,7 +51,7 @@ func.func @torch.aten.max_pool2d(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch
// CHECK: %[[VAL_10:.*]] = stablehlo.maximum %[[VAL_8]], %[[VAL_9]] : tensor<f32> // CHECK: %[[VAL_10:.*]] = stablehlo.maximum %[[VAL_8]], %[[VAL_9]] : tensor<f32>
// CHECK: stablehlo.return %[[VAL_10]] : tensor<f32> // CHECK: stablehlo.return %[[VAL_10]] : tensor<f32>
// CHECK: }) // CHECK: })
// CHECK-SAME{LITERAL}: {padding = dense<[[0, 0], [0, 0], [2, 2], [1, 1]]> : tensor<4x2xi64>, window_dilations = dense<[1, 1, 2, 1]> : tensor<4xi64>, window_dimensions = dense<[1, 1, 2, 2]> : tensor<4xi64>, window_strides = dense<1> : tensor<4xi64>} : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32> // CHECK-SAME{LITERAL}: {padding = dense<[[0, 0], [0, 0], [2, 2], [1, 1]]> : tensor<4x2xi64>, window_dilations = array<i64: 1, 1, 2, 1>, window_dimensions = array<i64: 1, 1, 2, 2>, window_strides = array<i64: 1, 1, 1, 1>} : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32>
// CHECK: %[[VAL_7:.*]] = torch_c.from_builtin_tensor %[[VAL_6]] : tensor<?x?x?x?xf32> -> !torch.vtensor<[?,?,?,?],f32> // CHECK: %[[VAL_7:.*]] = torch_c.from_builtin_tensor %[[VAL_6]] : tensor<?x?x?x?xf32> -> !torch.vtensor<[?,?,?,?],f32>
// CHECK: return %[[VAL_7]] : !torch.vtensor<[?,?,?,?],f32> // CHECK: return %[[VAL_7]] : !torch.vtensor<[?,?,?,?],f32>
func.func @torch.aten.max_pool2d$padding(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> { func.func @torch.aten.max_pool2d$padding(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> {
@ -105,7 +105,7 @@ func.func @torch.aten.max_pool2d$padding(%arg0: !torch.vtensor<[?,?,?,?],f32>) -
// CHECK: %[[T20:.*]] = stablehlo.select %[[T16]], %[[ARG2]], %[[ARG4]] : tensor<i1>, tensor<i64> // CHECK: %[[T20:.*]] = stablehlo.select %[[T16]], %[[ARG2]], %[[ARG4]] : tensor<i1>, tensor<i64>
// CHECK: %[[T21:.*]] = stablehlo.select %[[T18]], %[[T19]], %[[T20]] : tensor<i1>, tensor<i64> // CHECK: %[[T21:.*]] = stablehlo.select %[[T18]], %[[T19]], %[[T20]] : tensor<i1>, tensor<i64>
// CHECK: stablehlo.return %[[T17]], %[[T21]] : tensor<f32>, tensor<i64> // CHECK: stablehlo.return %[[T17]], %[[T21]] : tensor<f32>, tensor<i64>
// CHECK: }) {padding = dense<0> : tensor<3x2xi64>, window_dilations = dense<1> : tensor<3xi64>, window_dimensions = dense<[1, 3, 3]> : tensor<3xi64>, window_strides = dense<[1, 2, 2]> : tensor<3xi64>} : (tensor<?x?x?xf32>, tensor<?x?x?xi64>, tensor<f32>, tensor<i64>) -> (tensor<?x?x?xf32>, tensor<?x?x?xi64>) // CHECK: }) {padding = dense<0> : tensor<3x2xi64>, window_dilations = array<i64: 1, 1, 1>, window_dimensions = array<i64: 1, 3, 3>, window_strides = array<i64: 1, 2, 2>} : (tensor<?x?x?xf32>, tensor<?x?x?xi64>, tensor<f32>, tensor<i64>) -> (tensor<?x?x?xf32>, tensor<?x?x?xi64>)
// CHECK: %[[T14:.*]] = torch_c.from_builtin_tensor %[[T13]]#0 : tensor<?x?x?xf32> -> !torch.vtensor<[?,?,?],f32> // CHECK: %[[T14:.*]] = torch_c.from_builtin_tensor %[[T13]]#0 : tensor<?x?x?xf32> -> !torch.vtensor<[?,?,?],f32>
// CHECK: %[[T15:.*]] = torch_c.from_builtin_tensor %[[T13]]#1 : tensor<?x?x?xi64> -> !torch.vtensor<[?,?,?],si64> // CHECK: %[[T15:.*]] = torch_c.from_builtin_tensor %[[T13]]#1 : tensor<?x?x?xi64> -> !torch.vtensor<[?,?,?],si64>
// CHECK: return %[[T14]], %[[T15]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],si64> // CHECK: return %[[T14]], %[[T15]] : !torch.vtensor<[?,?,?],f32>, !torch.vtensor<[?,?,?],si64>
@ -141,7 +141,7 @@ func.func @torch.aten.max_pool2d_with_indices(%arg0: !torch.vtensor<[?,?,?],f32>
// CHECK: ^bb0(%[[IVAL_0:.*]]: tensor<f32>, %[[IVAL_1:.*]]: tensor<f32>): // CHECK: ^bb0(%[[IVAL_0:.*]]: tensor<f32>, %[[IVAL_1:.*]]: tensor<f32>):
// CHECK: %[[IVAL_2:.*]] = stablehlo.add %[[IVAL_0]], %[[IVAL_1]] : tensor<f32> // CHECK: %[[IVAL_2:.*]] = stablehlo.add %[[IVAL_0]], %[[IVAL_1]] : tensor<f32>
// CHECK: stablehlo.return %[[IVAL_2]] : tensor<f32> // CHECK: stablehlo.return %[[IVAL_2]] : tensor<f32>
// CHECK{LITERAL}: }) {padding = dense<[[0, 0], [0, 0], [1, 1], [1, 1]]> : tensor<4x2xi64>, window_dilations = dense<1> : tensor<4xi64>, window_dimensions = dense<[1, 1, 3, 3]> : tensor<4xi64>, window_strides = dense<[1, 1, 2, 2]> : tensor<4xi64>} : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32> // CHECK{LITERAL}: }) {padding = dense<[[0, 0], [0, 0], [1, 1], [1, 1]]> : tensor<4x2xi64>, window_dilations = array<i64: 1, 1, 1, 1>, window_dimensions = array<i64: 1, 1, 3, 3>, window_strides = array<i64: 1, 1, 2, 2>} : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32>
// CHECK: %[[VAL_7:.*]] = stablehlo.constant dense<1.000000e+00> : tensor<f32> // CHECK: %[[VAL_7:.*]] = stablehlo.constant dense<1.000000e+00> : tensor<f32>
// CHECK: %[[IDX_0:.*]] = arith.constant 0 : index // CHECK: %[[IDX_0:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[IDX_0]] : tensor<?x?x?x?xf32> // CHECK: %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[IDX_0]] : tensor<?x?x?x?xf32>
@ -162,7 +162,7 @@ func.func @torch.aten.max_pool2d_with_indices(%arg0: !torch.vtensor<[?,?,?],f32>
// CHECK: ^bb0(%[[IVAL_3:.*]]: tensor<f32>, %[[IVAL_4:.*]]: tensor<f32>): // CHECK: ^bb0(%[[IVAL_3:.*]]: tensor<f32>, %[[IVAL_4:.*]]: tensor<f32>):
// CHECK: %[[IVAL_5:.*]] = stablehlo.add %[[IVAL_3]], %[[IVAL_4]] : tensor<f32> // CHECK: %[[IVAL_5:.*]] = stablehlo.add %[[IVAL_3]], %[[IVAL_4]] : tensor<f32>
// CHECK: stablehlo.return %[[IVAL_5]] : tensor<f32> // CHECK: stablehlo.return %[[IVAL_5]] : tensor<f32>
// CHECK{LITERAL}: }) {padding = dense<[[0, 0], [0, 0], [1, 1], [1, 1]]> : tensor<4x2xi64>, window_dilations = dense<1> : tensor<4xi64>, window_dimensions = dense<[1, 1, 3, 3]> : tensor<4xi64>, window_strides = dense<[1, 1, 2, 2]> : tensor<4xi64>} : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32> // CHECK{LITERAL}: }) {padding = dense<[[0, 0], [0, 0], [1, 1], [1, 1]]> : tensor<4x2xi64>, window_dilations = array<i64: 1, 1, 1, 1>, window_dimensions = array<i64: 1, 1, 3, 3>, window_strides = array<i64: 1, 1, 2, 2>} : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32>
// CHECK: %[[VAL_20:.*]] = stablehlo.divide %[[VAL_6]], %[[VAL_19]] : tensor<?x?x?x?xf32> // CHECK: %[[VAL_20:.*]] = stablehlo.divide %[[VAL_6]], %[[VAL_19]] : tensor<?x?x?x?xf32>
// CHECK: %[[VAL_21:.*]] = torch_c.from_builtin_tensor %[[VAL_20]] : tensor<?x?x?x?xf32> -> !torch.vtensor<[?,?,?,?],f32> // CHECK: %[[VAL_21:.*]] = torch_c.from_builtin_tensor %[[VAL_20]] : tensor<?x?x?x?xf32> -> !torch.vtensor<[?,?,?,?],f32>
// CHECK: return %[[VAL_21]] : !torch.vtensor<[?,?,?,?],f32> // CHECK: return %[[VAL_21]] : !torch.vtensor<[?,?,?,?],f32>
@ -198,7 +198,7 @@ func.func @torch.aten.avg_pool2d(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch
// CHECK: ^bb0(%[[ARG1:.*]]: tensor<f32>, %[[ARG2:.*]]: tensor<f32>): // CHECK: ^bb0(%[[ARG1:.*]]: tensor<f32>, %[[ARG2:.*]]: tensor<f32>):
// CHECK: %[[T10:.*]] = stablehlo.add %[[ARG1]], %[[ARG2]] : tensor<f32> // CHECK: %[[T10:.*]] = stablehlo.add %[[ARG1]], %[[ARG2]] : tensor<f32>
// CHECK: stablehlo.return %[[T10]] : tensor<f32> // CHECK: stablehlo.return %[[T10]] : tensor<f32>
// CHECK{LITERAL}: }) {padding = dense<[[0, 0], [0, 0], [1, 1], [1, 1]]> : tensor<4x2xi64>, window_dilations = dense<1> : tensor<4xi64>, window_dimensions = dense<[1, 1, 3, 3]> : tensor<4xi64>, window_strides = dense<[1, 1, 2, 2]> : tensor<4xi64>} : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32> // CHECK{LITERAL}: }) {padding = dense<[[0, 0], [0, 0], [1, 1], [1, 1]]> : tensor<4x2xi64>, window_dilations = array<i64: 1, 1, 1, 1>, window_dimensions = array<i64: 1, 1, 3, 3>, window_strides = array<i64: 1, 1, 2, 2>} : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32>
// CHECK: %[[T6:.*]] = stablehlo.constant dense<9> : tensor<i64> // CHECK: %[[T6:.*]] = stablehlo.constant dense<9> : tensor<i64>
// CHECK: %[[T7:.*]] = stablehlo.convert %[[T6]] : (tensor<i64>) -> tensor<f32> // CHECK: %[[T7:.*]] = stablehlo.convert %[[T6]] : (tensor<i64>) -> tensor<f32>
// CHECK: %[[T8:.*]] = chlo.broadcast_divide %[[T5]], %[[T7]] : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32> // CHECK: %[[T8:.*]] = chlo.broadcast_divide %[[T5]], %[[T7]] : (tensor<?x?x?x?xf32>, tensor<f32>) -> tensor<?x?x?x?xf32>