mirror of https://github.com/llvm/torch-mlir
[Torch] support AtenExp2Op (#3832)
- support AtenExp2Op by decomposing it to aten.pow.scalar - refine stablehlo pow.scalar pow.Tensor_Scalar pow.Tensor_Tensor lowering according to https://github.com/llvm/torch-mlir/pull/2983 - Close https://github.com/llvm/torch-mlir/pull/2983pull/3842/head
parent
4dd213b042
commit
9ce2a69703
|
@ -996,6 +996,51 @@ def Torch_AtenExp_Op : Torch_Op<"aten.exp_", [
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_AtenExp2Op : Torch_Op<"aten.exp2", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics,
|
||||||
|
ReadOnly
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::exp2 : (Tensor) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchOptionalTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenExp2Op::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 1, 1);
|
||||||
|
}
|
||||||
|
void AtenExp2Op::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 1, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
|
def Torch_AtenExp2_Op : Torch_Op<"aten.exp2_", [
|
||||||
|
IsTrailingUnderscoreInplaceVariant,
|
||||||
|
AllowsTypeRefinement
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::exp2_ : (Tensor) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
Torch_NonValueTensorType:$self
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchOptionalNonValueTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenExp2_Op::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 1, 1);
|
||||||
|
}
|
||||||
|
void AtenExp2_Op::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 1, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_AtenExpm1Op : Torch_Op<"aten.expm1", [
|
def Torch_AtenExpm1Op : Torch_Op<"aten.expm1", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics,
|
HasValueSemantics,
|
||||||
|
|
|
@ -931,79 +931,49 @@ LogicalResult ConvertAtenOp<AtenReciprocalOp>::matchAndRewrite(
|
||||||
return success();
|
return success();
|
||||||
}
|
}
|
||||||
|
|
||||||
// AtenPowTensorScalarOp
|
namespace {
|
||||||
template <>
|
template <typename AtenOpT>
|
||||||
LogicalResult ConvertAtenOp<AtenPowTensorScalarOp>::matchAndRewrite(
|
class ConvertAtenPowOp : public OpConversionPattern<AtenOpT> {
|
||||||
AtenPowTensorScalarOp op, OpAdaptor adaptor,
|
public:
|
||||||
ConversionPatternRewriter &rewriter) const {
|
using OpConversionPattern<AtenOpT>::OpConversionPattern;
|
||||||
Value lhs = adaptor.getSelf();
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
||||||
auto lhsType = dyn_cast<TensorType>(lhs.getType());
|
LogicalResult
|
||||||
Value rhs = adaptor.getExponent();
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
||||||
TensorType rhsType = dyn_cast<TensorType>(rhs.getType());
|
ConversionPatternRewriter &rewriter) const override {
|
||||||
|
auto outType = cast<TensorType>(
|
||||||
|
OpConversionPattern<AtenPowScalarOp>::getTypeConverter()->convertType(
|
||||||
|
op.getType()));
|
||||||
|
|
||||||
if (!lhsType)
|
Type outElemTy = outType.getElementType();
|
||||||
return op.emitError("only Tensor types supported in StableHLO");
|
if (!outElemTy.isIntOrFloat()) {
|
||||||
|
return op.emitError(
|
||||||
|
"only floating-point or integer datatype legalization supported");
|
||||||
|
}
|
||||||
|
|
||||||
auto outType = cast<TensorType>(
|
Value lhs = adaptor.getSelf();
|
||||||
OpConversionPattern<AtenPowTensorScalarOp>::getTypeConverter()
|
auto lhsType = dyn_cast<TensorType>(lhs.getType());
|
||||||
->convertType(op.getType()));
|
Value rhs = adaptor.getExponent();
|
||||||
|
auto rhsType = dyn_cast<TensorType>(rhs.getType());
|
||||||
|
|
||||||
Type outElemTy = outType.getElementType();
|
if (!lhsType && !rhsType) {
|
||||||
if (!outElemTy.isIntOrFloat()) {
|
return op.emitError("only Tensor types supported in StableHLO");
|
||||||
return op.emitError(
|
}
|
||||||
"only floating-point or integer datatype legalization supported");
|
if (!lhsType) {
|
||||||
|
lhs = hlo::scalarToStablehloTensor(rewriter, op, lhs, outElemTy);
|
||||||
|
}
|
||||||
|
if (!rhsType) {
|
||||||
|
rhs = hlo::scalarToStablehloTensor(rewriter, op, rhs, outElemTy);
|
||||||
|
}
|
||||||
|
|
||||||
|
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outElemTy);
|
||||||
|
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outElemTy);
|
||||||
|
DenseI64ArrayAttr bcastDimensions;
|
||||||
|
rewriter.replaceOpWithNewOp<chlo::BroadcastPowOp>(op, outType, lhs, rhs,
|
||||||
|
bcastDimensions);
|
||||||
|
return success();
|
||||||
}
|
}
|
||||||
|
};
|
||||||
if (!rhsType) {
|
} // namespace
|
||||||
rhs = hlo::scalarToStablehloTensor(rewriter, op, rhs, outElemTy);
|
|
||||||
}
|
|
||||||
DenseI64ArrayAttr bcastDimensions;
|
|
||||||
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outElemTy);
|
|
||||||
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outElemTy);
|
|
||||||
auto loc = op.getLoc();
|
|
||||||
Value result = rewriter.create<chlo::BroadcastPowOp>(loc, outType, lhs, rhs,
|
|
||||||
bcastDimensions);
|
|
||||||
|
|
||||||
rewriter.replaceOp(op, result);
|
|
||||||
return success();
|
|
||||||
}
|
|
||||||
|
|
||||||
// AtenPowScalarOp
|
|
||||||
template <>
|
|
||||||
LogicalResult ConvertAtenOp<AtenPowScalarOp>::matchAndRewrite(
|
|
||||||
AtenPowScalarOp op, OpAdaptor adaptor,
|
|
||||||
ConversionPatternRewriter &rewriter) const {
|
|
||||||
Value lhs = adaptor.getSelf();
|
|
||||||
auto lhsType = dyn_cast<TensorType>(lhs.getType());
|
|
||||||
Value rhs = adaptor.getExponent();
|
|
||||||
auto rhsType = dyn_cast<TensorType>(rhs.getType());
|
|
||||||
|
|
||||||
if (!rhsType)
|
|
||||||
return op.emitError("only Tensor types supported in StableHLO");
|
|
||||||
|
|
||||||
auto outType = cast<TensorType>(
|
|
||||||
OpConversionPattern<AtenPowScalarOp>::getTypeConverter()->convertType(
|
|
||||||
op.getType()));
|
|
||||||
|
|
||||||
Type outElemTy = outType.getElementType();
|
|
||||||
if (!outElemTy.isIntOrFloat()) {
|
|
||||||
return op.emitError(
|
|
||||||
"only floating-point or integer datatype legalization supported");
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!lhsType) {
|
|
||||||
lhs = hlo::scalarToStablehloTensor(rewriter, op, lhs, outElemTy);
|
|
||||||
}
|
|
||||||
DenseI64ArrayAttr bcastDimensions;
|
|
||||||
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outElemTy);
|
|
||||||
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outElemTy);
|
|
||||||
auto loc = op.getLoc();
|
|
||||||
Value result = rewriter.create<chlo::BroadcastPowOp>(loc, outType, lhs, rhs,
|
|
||||||
bcastDimensions);
|
|
||||||
|
|
||||||
rewriter.replaceOp(op, result);
|
|
||||||
return success();
|
|
||||||
}
|
|
||||||
|
|
||||||
// PrimNumToTensorScalarOp
|
// PrimNumToTensorScalarOp
|
||||||
template <>
|
template <>
|
||||||
|
@ -1797,29 +1767,6 @@ LogicalResult ConvertAtenOp<AtenGeluBackwardOp>::matchAndRewrite(
|
||||||
return success();
|
return success();
|
||||||
}
|
}
|
||||||
|
|
||||||
template <>
|
|
||||||
LogicalResult ConvertAtenOp<AtenPowTensorTensorOp>::matchAndRewrite(
|
|
||||||
AtenPowTensorTensorOp op, OpAdaptor adaptor,
|
|
||||||
ConversionPatternRewriter &rewriter) const {
|
|
||||||
Value lhs = adaptor.getSelf();
|
|
||||||
auto lhsTy = cast<TensorType>(lhs.getType());
|
|
||||||
Value rhs = adaptor.getExponent();
|
|
||||||
auto rhsTy = cast<TensorType>(rhs.getType());
|
|
||||||
|
|
||||||
if (!lhsTy || !rhsTy)
|
|
||||||
return op.emitError("only Tensor types supported");
|
|
||||||
|
|
||||||
auto outTy =
|
|
||||||
cast<TensorType>(this->getTypeConverter()->convertType(op.getType()));
|
|
||||||
|
|
||||||
lhs = hlo::promoteType(rewriter, op.getLoc(), lhs, outTy.getElementType());
|
|
||||||
rhs = hlo::promoteType(rewriter, op.getLoc(), rhs, outTy.getElementType());
|
|
||||||
|
|
||||||
rewriter.replaceOpWithNewOp<chlo::BroadcastPowOp>(op, outTy, lhs, rhs,
|
|
||||||
/*broadcast_attr*/ nullptr);
|
|
||||||
return success();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Converts `aten.empty.memory_format` to `tensor.empty` op.
|
// Converts `aten.empty.memory_format` to `tensor.empty` op.
|
||||||
template <>
|
template <>
|
||||||
LogicalResult ConvertAtenOp<AtenEmptyMemoryFormatOp>::matchAndRewrite(
|
LogicalResult ConvertAtenOp<AtenEmptyMemoryFormatOp>::matchAndRewrite(
|
||||||
|
@ -2250,6 +2197,14 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
|
||||||
|
|
||||||
#undef INSERT_BINARY_LOGICAL_PATTERN
|
#undef INSERT_BINARY_LOGICAL_PATTERN
|
||||||
|
|
||||||
|
#define INSERT_BINARY_POW_PATTERN(AtenOp) \
|
||||||
|
target.addIllegalOp<AtenOp>(); \
|
||||||
|
patterns.add<ConvertAtenPowOp<AtenOp>>(typeConverter, context)
|
||||||
|
INSERT_BINARY_POW_PATTERN(AtenPowTensorScalarOp);
|
||||||
|
INSERT_BINARY_POW_PATTERN(AtenPowTensorTensorOp);
|
||||||
|
INSERT_BINARY_POW_PATTERN(AtenPowScalarOp);
|
||||||
|
#undef INSERT_BINARY_ADDSUB_PATTERN
|
||||||
|
|
||||||
#define INSERT_ATENOP_PATTERN(AtenOp) \
|
#define INSERT_ATENOP_PATTERN(AtenOp) \
|
||||||
target.addIllegalOp<AtenOp>(); \
|
target.addIllegalOp<AtenOp>(); \
|
||||||
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context, options)
|
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context, options)
|
||||||
|
@ -2260,8 +2215,6 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
|
||||||
INSERT_ATENOP_PATTERN(ValueTensorLiteralOp);
|
INSERT_ATENOP_PATTERN(ValueTensorLiteralOp);
|
||||||
INSERT_ATENOP_PATTERN(AtenTensorIntOp);
|
INSERT_ATENOP_PATTERN(AtenTensorIntOp);
|
||||||
INSERT_ATENOP_PATTERN(AtenReciprocalOp);
|
INSERT_ATENOP_PATTERN(AtenReciprocalOp);
|
||||||
INSERT_ATENOP_PATTERN(AtenPowTensorScalarOp);
|
|
||||||
INSERT_ATENOP_PATTERN(AtenPowScalarOp);
|
|
||||||
INSERT_ATENOP_PATTERN(PrimNumToTensorScalarOp);
|
INSERT_ATENOP_PATTERN(PrimNumToTensorScalarOp);
|
||||||
INSERT_ATENOP_PATTERN(AtenScalarImplicitOp);
|
INSERT_ATENOP_PATTERN(AtenScalarImplicitOp);
|
||||||
INSERT_ATENOP_PATTERN(AtenContiguousOp);
|
INSERT_ATENOP_PATTERN(AtenContiguousOp);
|
||||||
|
@ -2285,7 +2238,6 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
|
||||||
INSERT_ATENOP_PATTERN(AtenSizeIntOp);
|
INSERT_ATENOP_PATTERN(AtenSizeIntOp);
|
||||||
INSERT_ATENOP_PATTERN(AtenToDtypeOp);
|
INSERT_ATENOP_PATTERN(AtenToDtypeOp);
|
||||||
INSERT_ATENOP_PATTERN(AtenWhereSelfOp);
|
INSERT_ATENOP_PATTERN(AtenWhereSelfOp);
|
||||||
INSERT_ATENOP_PATTERN(AtenPowTensorTensorOp);
|
|
||||||
|
|
||||||
INSERT_ATENOP_PATTERN(AtenEmptyMemoryFormatOp);
|
INSERT_ATENOP_PATTERN(AtenEmptyMemoryFormatOp);
|
||||||
INSERT_ATENOP_PATTERN(AtenFillScalarOp);
|
INSERT_ATENOP_PATTERN(AtenFillScalarOp);
|
||||||
|
|
|
@ -6487,6 +6487,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_shape_fn.aten.exp2\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||||
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
|
" return %0 : !torch.list<int>\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_shape_fn.aten.expm1\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
" func.func @\"__torch_mlir_shape_fn.aten.expm1\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
|
@ -11256,6 +11260,11 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||||
" return %1 : !torch.int\n"
|
" return %1 : !torch.int\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_dtype_fn.aten.exp2\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||||
|
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
|
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||||
|
" return %1 : !torch.int\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_dtype_fn.aten.expm1\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
" func.func @\"__torch_mlir_dtype_fn.aten.expm1\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||||
|
|
|
@ -9008,6 +9008,24 @@ class DecomposeAtenBinaryCrossEntropyWithLogitsOp
|
||||||
};
|
};
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
class DecomposeAtenExp2Op : public OpRewritePattern<AtenExp2Op> {
|
||||||
|
using OpRewritePattern<AtenExp2Op>::OpRewritePattern;
|
||||||
|
LogicalResult matchAndRewrite(AtenExp2Op op,
|
||||||
|
PatternRewriter &rewriter) const override {
|
||||||
|
Location loc = op.getLoc();
|
||||||
|
Value self = op.getSelf();
|
||||||
|
|
||||||
|
auto two =
|
||||||
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(2));
|
||||||
|
rewriter.replaceOpWithNewOp<AtenPowScalarOp>(op, op.getType(), two, self);
|
||||||
|
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
class DecomposeAtenOneHotOp : public OpRewritePattern<AtenOneHotOp> {
|
class DecomposeAtenOneHotOp : public OpRewritePattern<AtenOneHotOp> {
|
||||||
using OpRewritePattern<AtenOneHotOp>::OpRewritePattern;
|
using OpRewritePattern<AtenOneHotOp>::OpRewritePattern;
|
||||||
|
@ -10146,6 +10164,7 @@ public:
|
||||||
addPatternIfTargetOpIsIllegal<DecomposePrimTolistOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposePrimTolistOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposePrimsSqueezeOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposePrimsSqueezeOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenMovedimIntOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenMovedimIntOp>(patterns);
|
||||||
|
addPatternIfTargetOpIsIllegal<DecomposeAtenExp2Op>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenOneHotOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenOneHotOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenCrossEntropyLossOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenCrossEntropyLossOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenBinaryCrossEntropyWithLogitsOp>(
|
addPatternIfTargetOpIsIllegal<DecomposeAtenBinaryCrossEntropyWithLogitsOp>(
|
||||||
|
|
|
@ -2707,6 +2707,7 @@ ONNX_XFAIL_SET = {
|
||||||
"ElementwiseLog2IntModule_basic",
|
"ElementwiseLog2IntModule_basic",
|
||||||
"ElementwiseFminModule_basic",
|
"ElementwiseFminModule_basic",
|
||||||
"ElementwiseFmaxModule_basic",
|
"ElementwiseFmaxModule_basic",
|
||||||
|
"Exp2StaticModule_basic",
|
||||||
"MultinomialModule2D_basic",
|
"MultinomialModule2D_basic",
|
||||||
"MultinomialModule2D_F32",
|
"MultinomialModule2D_F32",
|
||||||
"PixelShuffleModuleStaticRank4Float32_basic",
|
"PixelShuffleModuleStaticRank4Float32_basic",
|
||||||
|
|
|
@ -216,6 +216,9 @@ def aten〇silu〡shape(self: List[int]) -> List[int]:
|
||||||
def aten〇exp〡shape(self: List[int]) -> List[int]:
|
def aten〇exp〡shape(self: List[int]) -> List[int]:
|
||||||
return upstream_shape_functions.unary(self)
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
|
def aten〇exp2〡shape(self: List[int]) -> List[int]:
|
||||||
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
def aten〇expm1〡shape(self: List[int]) -> List[int]:
|
def aten〇expm1〡shape(self: List[int]) -> List[int]:
|
||||||
return upstream_shape_functions.unary(self)
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
|
@ -2567,6 +2570,11 @@ def aten〇exp〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||||
self_rank, self_dtype = self_rank_dtype
|
self_rank, self_dtype = self_rank_dtype
|
||||||
return _get_dtype_of_floating_point_op(self_dtype)
|
return _get_dtype_of_floating_point_op(self_dtype)
|
||||||
|
|
||||||
|
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
||||||
|
def aten〇exp2〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||||
|
self_rank, self_dtype = self_rank_dtype
|
||||||
|
return _get_dtype_of_floating_point_op(self_dtype)
|
||||||
|
|
||||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
||||||
def aten〇expm1〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
def aten〇expm1〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||||
self_rank, self_dtype = self_rank_dtype
|
self_rank, self_dtype = self_rank_dtype
|
||||||
|
|
|
@ -317,6 +317,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
||||||
"aten::asin : (Tensor) -> (Tensor)",
|
"aten::asin : (Tensor) -> (Tensor)",
|
||||||
"aten::asinh : (Tensor) -> (Tensor)",
|
"aten::asinh : (Tensor) -> (Tensor)",
|
||||||
"aten::exp : (Tensor) -> (Tensor)",
|
"aten::exp : (Tensor) -> (Tensor)",
|
||||||
|
"aten::exp2 : (Tensor) -> (Tensor)",
|
||||||
"aten::expm1 : (Tensor) -> (Tensor)",
|
"aten::expm1 : (Tensor) -> (Tensor)",
|
||||||
"aten::cos : (Tensor) -> (Tensor)",
|
"aten::cos : (Tensor) -> (Tensor)",
|
||||||
"aten::cosh : (Tensor) -> (Tensor)",
|
"aten::cosh : (Tensor) -> (Tensor)",
|
||||||
|
|
|
@ -2881,6 +2881,29 @@ def ElementwiseSgnModule_basic(module, tu: TestUtils):
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class Exp2StaticModule(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args(
|
||||||
|
[
|
||||||
|
None,
|
||||||
|
([3, 2], torch.float32, True),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.ops.aten.exp2(x)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: Exp2StaticModule())
|
||||||
|
def Exp2StaticModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 2))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
class ElementwisePowModule(torch.nn.Module):
|
class ElementwisePowModule(torch.nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
Loading…
Reference in New Issue