mirror of https://github.com/llvm/torch-mlir
[MLIR] [ONNX] lowering for onnx tile op and sign op (#2725)
parent
c531f5495b
commit
ac8975ea12
|
@ -1445,6 +1445,47 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
|
|||
none, none, none);
|
||||
return success();
|
||||
});
|
||||
patterns.onOp(
|
||||
"Tile", 6, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
||||
Torch::ValueTensorType resultType;
|
||||
Value operand;
|
||||
Value repeatDims;
|
||||
if (binder.tensorOperands(operand, repeatDims) ||
|
||||
binder.tensorResultType(resultType))
|
||||
return failure();
|
||||
|
||||
// convert repeatDims tensor to list of ints
|
||||
auto repeatDimsSizes =
|
||||
dyn_cast<Torch::ValueTensorType>(repeatDims.getType()).getSizes();
|
||||
SmallVector<Value> dimList;
|
||||
SmallVector<int64_t> selectSizes;
|
||||
selectSizes.push_back(1);
|
||||
Torch::BaseTensorType shapeType =
|
||||
repeatDims.getType().cast<Torch::BaseTensorType>();
|
||||
Type selectResultType = shapeType.getWithSizesAndDtype(
|
||||
llvm::ArrayRef(selectSizes), shapeType.getOptionalDtype());
|
||||
Value zero = rewriter.create<Torch::ConstantIntOp>(
|
||||
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
||||
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
|
||||
for (int i = 0; i < repeatDimsSizes[0]; i++) {
|
||||
Value selectIndex = rewriter.create<Torch::ConstantIntOp>(
|
||||
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
||||
rewriter.getIntegerAttr(rewriter.getIntegerType(64), i));
|
||||
Value extract = rewriter.create<Torch::AtenSelectIntOp>(
|
||||
binder.getLoc(), selectResultType, repeatDims, zero, selectIndex);
|
||||
Value dim = rewriter.create<Torch::AtenItemOp>(
|
||||
binder.getLoc(), rewriter.getType<Torch::IntType>(), extract);
|
||||
dimList.push_back(dim);
|
||||
}
|
||||
Value dimValueList = rewriter.create<Torch::PrimListConstructOp>(
|
||||
binder.getLoc(),
|
||||
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
||||
dimList);
|
||||
|
||||
rewriter.replaceOpWithNewOp<Torch::AtenTileOp>(binder.op, resultType,
|
||||
operand, dimValueList);
|
||||
return success();
|
||||
});
|
||||
patterns.onOp(
|
||||
"Topk", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
||||
Torch::ValueTensorType Values_type, Indices_type;
|
||||
|
@ -1476,4 +1517,16 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
|
|||
cstSorted);
|
||||
return success();
|
||||
});
|
||||
patterns.onOp("Sign", 9,
|
||||
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
||||
Torch::ValueTensorType resultType;
|
||||
Value operand;
|
||||
if (binder.tensorOperand(operand) ||
|
||||
binder.tensorResultType(resultType))
|
||||
return failure();
|
||||
|
||||
rewriter.replaceOpWithNewOp<Torch::AtenSignOp>(
|
||||
binder.op, resultType, operand);
|
||||
return success();
|
||||
});
|
||||
}
|
||||
|
|
|
@ -1333,3 +1333,32 @@ func.func @test_reshape_zero_and_negative_dim(%arg0: !torch.vtensor<[2,3,4],f32>
|
|||
%0:2 = torch.operator "onnx.TopK"(%arg0, %arg1) {torch.onnx.axis = -1 : si64} : (!torch.vtensor<[3,4],f32>, !torch.vtensor<[1],si64>) -> (!torch.vtensor<[3,3],f32>, !torch.vtensor<[3,3],si64>)
|
||||
return %0#0, %0#1 : !torch.vtensor<[3,3],f32>, !torch.vtensor<[3,3],si64>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func.func @test_tile
|
||||
func.func @test_tile(%arg0: !torch.vtensor<[2, 3, 4],f32>, %arg1: !torch.vtensor<[3], si64>) -> !torch.vtensor<[2,12,4],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 6 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
|
||||
// CHECK: %[[INT0:.*]] = torch.constant.int 0
|
||||
// CHECK: %[[INT0_0:.*]] = torch.constant.int 0
|
||||
// CHECK: %[[EXTRACT_0:.*]] = torch.aten.select.int %arg1, %[[INT0]], %[[INT0_0]] : !torch.vtensor<[3],si64>, !torch.int, !torch.int -> !torch.vtensor<[1],si64>
|
||||
// CHECK: %[[ELE_0:.*]] = torch.aten.item %[[EXTRACT_0]] : !torch.vtensor<[1],si64> -> !torch.int
|
||||
// CHECK: %[[INT1:.*]] = torch.constant.int 1
|
||||
// CHECK: %[[EXTRACT_1:.*]] = torch.aten.select.int %arg1, %[[INT0]], %[[INT1]] : !torch.vtensor<[3],si64>, !torch.int, !torch.int -> !torch.vtensor<[1],si64>
|
||||
// CHECK: %[[ELE_1:.*]] = torch.aten.item %[[EXTRACT_1]] : !torch.vtensor<[1],si64> -> !torch.int
|
||||
// CHECK: %[[INT2:.*]] = torch.constant.int 2
|
||||
// CHECK: %[[EXTRACT_2:.*]] = torch.aten.select.int %arg1, %[[INT0]], %[[INT2]] : !torch.vtensor<[3],si64>, !torch.int, !torch.int -> !torch.vtensor<[1],si64>
|
||||
// CHECK: %[[ELE_2:.*]] = torch.aten.item %[[EXTRACT_2]] : !torch.vtensor<[1],si64> -> !torch.int
|
||||
// CHECK: %[[DIM_LIST:.*]] = torch.prim.ListConstruct %[[ELE_0]], %[[ELE_1]], %[[ELE_2]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
|
||||
// CHECK: %7 = torch.aten.tile %arg0, %[[DIM_LIST]] : !torch.vtensor<[2,3,4],f32>, !torch.list<int> -> !torch.vtensor<[2,12,4],f32>
|
||||
%0 = torch.operator "onnx.Tile"(%arg0, %arg1) : (!torch.vtensor<[2, 3, 4],f32>, !torch.vtensor<[3], si64>) -> !torch.vtensor<[2, 12, 4],f32>
|
||||
return %0 : !torch.vtensor<[2, 12, 4],f32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func.func @test_sign
|
||||
func.func @test_sign(%arg0: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 9 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
|
||||
// CHECK: torch.aten.sign %arg0 : !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32>
|
||||
%0 = torch.operator "onnx.Sign"(%arg0) : (!torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32>
|
||||
return %0 : !torch.vtensor<[3,4,5],f32>
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue