mirror of https://github.com/llvm/torch-mlir
[onnx] Support integer types for `onnx.Pow` (#3626)
Pow is not support for the `torch` operator. Add casting for integer types.pull/3631/head
parent
39307f0462
commit
af67f9efb0
|
@ -2856,18 +2856,66 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
|
||||||
binder.op, resultType, data, padsSizeList, modeVal, constantValue);
|
binder.op, resultType, data, padsSizeList, modeVal, constantValue);
|
||||||
return success();
|
return success();
|
||||||
});
|
});
|
||||||
patterns.onOp("Pow", 1,
|
patterns.onOp(
|
||||||
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
"Pow", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
||||||
Torch::ValueTensorType resultType;
|
Torch::ValueTensorType resultType;
|
||||||
Value lhs, rhs;
|
Value lhs, rhs;
|
||||||
if (binder.tensorOperands(lhs, rhs) ||
|
if (binder.tensorOperands(lhs, rhs) ||
|
||||||
binder.tensorResultType(resultType)) {
|
binder.tensorResultType(resultType)) {
|
||||||
return failure();
|
return failure();
|
||||||
}
|
}
|
||||||
rewriter.replaceOpWithNewOp<Torch::AtenPowTensorTensorOp>(
|
|
||||||
binder.op, resultType, lhs, rhs);
|
auto loc = binder.getLoc();
|
||||||
return success();
|
auto lhsTy = cast<Torch::ValueTensorType>(lhs.getType());
|
||||||
});
|
auto rhsTy = cast<Torch::ValueTensorType>(rhs.getType());
|
||||||
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
|
||||||
|
loc, rewriter.getBoolAttr(false));
|
||||||
|
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
|
||||||
|
auto torchDtype = Torch::getScalarTypeForType(rewriter.getF32Type());
|
||||||
|
Value tyConst = rewriter.create<Torch::ConstantIntOp>(
|
||||||
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
||||||
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
|
||||||
|
static_cast<int64_t>(torchDtype)));
|
||||||
|
|
||||||
|
if (isa<IntegerType>(lhsTy.getDtype())) {
|
||||||
|
lhsTy = rewriter.getType<Torch::ValueTensorType>(
|
||||||
|
lhsTy.getSizes(), rewriter.getF32Type());
|
||||||
|
lhs = rewriter.create<Torch::AtenToDtypeOp>(loc, lhsTy, lhs, tyConst,
|
||||||
|
cstFalse, cstFalse, none);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (isa<IntegerType>(rhsTy.getDtype())) {
|
||||||
|
rhsTy = rewriter.getType<Torch::ValueTensorType>(
|
||||||
|
rhsTy.getSizes(), rewriter.getF32Type());
|
||||||
|
rhs = rewriter.create<Torch::AtenToDtypeOp>(loc, rhsTy, rhs, tyConst,
|
||||||
|
cstFalse, cstFalse, none);
|
||||||
|
}
|
||||||
|
|
||||||
|
auto powType = resultType;
|
||||||
|
if (isa<IntegerType>(resultType.getDtype())) {
|
||||||
|
powType = rewriter.getType<Torch::ValueTensorType>(
|
||||||
|
resultType.getSizes(), rewriter.getF32Type());
|
||||||
|
}
|
||||||
|
|
||||||
|
Value pow = rewriter.create<Torch::AtenPowTensorTensorOp>(loc, powType,
|
||||||
|
lhs, rhs);
|
||||||
|
|
||||||
|
if (!isa<IntegerType>(resultType.getDtype())) {
|
||||||
|
rewriter.replaceOp(binder.op, pow);
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
|
||||||
|
auto outDtype = Torch::getScalarTypeForType(resultType.getDtype());
|
||||||
|
auto outTyConst = rewriter.create<Torch::ConstantIntOp>(
|
||||||
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
||||||
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
|
||||||
|
static_cast<int64_t>(outDtype)));
|
||||||
|
|
||||||
|
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
|
||||||
|
binder.op, resultType, pow, outTyConst, cstFalse, cstFalse, none);
|
||||||
|
|
||||||
|
return success();
|
||||||
|
});
|
||||||
patterns.onOp(
|
patterns.onOp(
|
||||||
"Identity", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
"Identity", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
||||||
Torch::ValueTensorType resultType;
|
Torch::ValueTensorType resultType;
|
||||||
|
|
|
@ -1009,11 +1009,28 @@ func.func @test_pad_edge(%arg0: !torch.vtensor<[3,4],f32>, %arg1: !torch.vtensor
|
||||||
// -----
|
// -----
|
||||||
|
|
||||||
// CHECK-LABEL: func.func @test_pow
|
// CHECK-LABEL: func.func @test_pow
|
||||||
func.func @test_pow(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 15 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
|
func.func @test_pow(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 15 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
|
||||||
// CHECK: torch.aten.pow.Tensor_Tensor %arg0, %arg1 : !torch.vtensor<[3,4,5],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32>
|
// CHECK: torch.aten.pow.Tensor_Tensor %arg0, %arg1 : !torch.vtensor<[3,4,5],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32>
|
||||||
%0 = torch.operator "onnx.Pow"(%arg0, %arg1) : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32>
|
%0 = torch.operator "onnx.Pow"(%arg0, %arg1) : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32>
|
||||||
return %0 : !torch.vtensor<[3,4,5],f32>
|
return %0 : !torch.vtensor<[3,4,5],f32>
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// -----
|
||||||
|
|
||||||
|
// CHECK-LABEL: func.func @test_pow_i32
|
||||||
|
func.func @test_pow_i32(%arg0: !torch.vtensor<[3,4,5],si32>, %arg1: !torch.vtensor<[3,4,5],si32>) -> !torch.vtensor<[3,4,5],si32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 15 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
|
||||||
|
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
|
||||||
|
// CHECK: %[[NONE:.+]] = torch.constant.none
|
||||||
|
// CHECK: %[[DTY:.+]] = torch.constant.int 6
|
||||||
|
// CHECK: %[[CAST_LHS:.+]] = torch.aten.to.dtype %arg0, %[[DTY]], %[[FALSE]], %[[FALSE]], %[[NONE]]
|
||||||
|
// CHECK: %[[CAST_RHS:.+]] = torch.aten.to.dtype %arg1, %[[DTY]], %[[FALSE]], %[[FALSE]], %[[NONE]]
|
||||||
|
// CHECK: %[[POW:.+]] = torch.aten.pow.Tensor_Tensor %[[CAST_LHS]], %[[CAST_RHS]]
|
||||||
|
// CHECK: %[[DTY:.+]] = torch.constant.int 3
|
||||||
|
// CHECK: %[[RES:.+]] = torch.aten.to.dtype %2, %[[DTY]], %[[FALSE]], %[[FALSE]], %[[NONE]]
|
||||||
|
// CHECK: return %[[RES]]
|
||||||
|
%0 = torch.operator "onnx.Pow"(%arg0, %arg1) : (!torch.vtensor<[3,4,5],si32>, !torch.vtensor<[3,4,5],si32>) -> !torch.vtensor<[3,4,5],si32>
|
||||||
|
return %0 : !torch.vtensor<[3,4,5],si32>
|
||||||
|
}
|
||||||
|
|
||||||
// -----
|
// -----
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue