mirror of https://github.com/llvm/torch-mlir
[onnx] Support integer types for `onnx.Pow` (#3626)
Pow is not support for the `torch` operator. Add casting for integer types.pull/3631/head
parent
39307f0462
commit
af67f9efb0
|
@ -2856,16 +2856,64 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
|
|||
binder.op, resultType, data, padsSizeList, modeVal, constantValue);
|
||||
return success();
|
||||
});
|
||||
patterns.onOp("Pow", 1,
|
||||
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
||||
patterns.onOp(
|
||||
"Pow", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
||||
Torch::ValueTensorType resultType;
|
||||
Value lhs, rhs;
|
||||
if (binder.tensorOperands(lhs, rhs) ||
|
||||
binder.tensorResultType(resultType)) {
|
||||
return failure();
|
||||
}
|
||||
rewriter.replaceOpWithNewOp<Torch::AtenPowTensorTensorOp>(
|
||||
binder.op, resultType, lhs, rhs);
|
||||
|
||||
auto loc = binder.getLoc();
|
||||
auto lhsTy = cast<Torch::ValueTensorType>(lhs.getType());
|
||||
auto rhsTy = cast<Torch::ValueTensorType>(rhs.getType());
|
||||
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
|
||||
loc, rewriter.getBoolAttr(false));
|
||||
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
|
||||
auto torchDtype = Torch::getScalarTypeForType(rewriter.getF32Type());
|
||||
Value tyConst = rewriter.create<Torch::ConstantIntOp>(
|
||||
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
||||
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
|
||||
static_cast<int64_t>(torchDtype)));
|
||||
|
||||
if (isa<IntegerType>(lhsTy.getDtype())) {
|
||||
lhsTy = rewriter.getType<Torch::ValueTensorType>(
|
||||
lhsTy.getSizes(), rewriter.getF32Type());
|
||||
lhs = rewriter.create<Torch::AtenToDtypeOp>(loc, lhsTy, lhs, tyConst,
|
||||
cstFalse, cstFalse, none);
|
||||
}
|
||||
|
||||
if (isa<IntegerType>(rhsTy.getDtype())) {
|
||||
rhsTy = rewriter.getType<Torch::ValueTensorType>(
|
||||
rhsTy.getSizes(), rewriter.getF32Type());
|
||||
rhs = rewriter.create<Torch::AtenToDtypeOp>(loc, rhsTy, rhs, tyConst,
|
||||
cstFalse, cstFalse, none);
|
||||
}
|
||||
|
||||
auto powType = resultType;
|
||||
if (isa<IntegerType>(resultType.getDtype())) {
|
||||
powType = rewriter.getType<Torch::ValueTensorType>(
|
||||
resultType.getSizes(), rewriter.getF32Type());
|
||||
}
|
||||
|
||||
Value pow = rewriter.create<Torch::AtenPowTensorTensorOp>(loc, powType,
|
||||
lhs, rhs);
|
||||
|
||||
if (!isa<IntegerType>(resultType.getDtype())) {
|
||||
rewriter.replaceOp(binder.op, pow);
|
||||
return success();
|
||||
}
|
||||
|
||||
auto outDtype = Torch::getScalarTypeForType(resultType.getDtype());
|
||||
auto outTyConst = rewriter.create<Torch::ConstantIntOp>(
|
||||
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
||||
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
|
||||
static_cast<int64_t>(outDtype)));
|
||||
|
||||
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
|
||||
binder.op, resultType, pow, outTyConst, cstFalse, cstFalse, none);
|
||||
|
||||
return success();
|
||||
});
|
||||
patterns.onOp(
|
||||
|
|
|
@ -1009,11 +1009,28 @@ func.func @test_pad_edge(%arg0: !torch.vtensor<[3,4],f32>, %arg1: !torch.vtensor
|
|||
// -----
|
||||
|
||||
// CHECK-LABEL: func.func @test_pow
|
||||
func.func @test_pow(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 15 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
|
||||
func.func @test_pow(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 15 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
|
||||
// CHECK: torch.aten.pow.Tensor_Tensor %arg0, %arg1 : !torch.vtensor<[3,4,5],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32>
|
||||
%0 = torch.operator "onnx.Pow"(%arg0, %arg1) : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32>
|
||||
return %0 : !torch.vtensor<[3,4,5],f32>
|
||||
}
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func.func @test_pow_i32
|
||||
func.func @test_pow_i32(%arg0: !torch.vtensor<[3,4,5],si32>, %arg1: !torch.vtensor<[3,4,5],si32>) -> !torch.vtensor<[3,4,5],si32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 15 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
|
||||
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
|
||||
// CHECK: %[[NONE:.+]] = torch.constant.none
|
||||
// CHECK: %[[DTY:.+]] = torch.constant.int 6
|
||||
// CHECK: %[[CAST_LHS:.+]] = torch.aten.to.dtype %arg0, %[[DTY]], %[[FALSE]], %[[FALSE]], %[[NONE]]
|
||||
// CHECK: %[[CAST_RHS:.+]] = torch.aten.to.dtype %arg1, %[[DTY]], %[[FALSE]], %[[FALSE]], %[[NONE]]
|
||||
// CHECK: %[[POW:.+]] = torch.aten.pow.Tensor_Tensor %[[CAST_LHS]], %[[CAST_RHS]]
|
||||
// CHECK: %[[DTY:.+]] = torch.constant.int 3
|
||||
// CHECK: %[[RES:.+]] = torch.aten.to.dtype %2, %[[DTY]], %[[FALSE]], %[[FALSE]], %[[NONE]]
|
||||
// CHECK: return %[[RES]]
|
||||
%0 = torch.operator "onnx.Pow"(%arg0, %arg1) : (!torch.vtensor<[3,4,5],si32>, !torch.vtensor<[3,4,5],si32>) -> !torch.vtensor<[3,4,5],si32>
|
||||
return %0 : !torch.vtensor<[3,4,5],si32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
|
|
Loading…
Reference in New Issue