Add decomposition of `aten.masked.tensor` op.

`aten.masked.tensor` op has been decomposed to `aten.masked.scalar` op.
pull/1211/head snapshot-20220811.561
Prashant Kumar 2022-08-08 20:57:11 +05:30
parent d96ec64be1
commit b1a506624c
7 changed files with 99 additions and 6 deletions

View File

@ -1928,6 +1928,55 @@ def Torch_AtenMaskedFill_ScalarOp : Torch_Op<"aten.masked_fill_.Scalar", [
}]; }];
} }
def Torch_AtenMaskedFillTensorOp : Torch_Op<"aten.masked_fill.Tensor", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::masked_fill.Tensor : (Tensor, Tensor, Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchTensorType:$mask,
AnyTorchTensorType:$value
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenMaskedFillTensorOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 3, 1);
}
void AtenMaskedFillTensorOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 3, 1);
}
}];
}
def Torch_AtenMaskedFill_TensorOp : Torch_Op<"aten.masked_fill_.Tensor", [
IsTrailingUnderscoreInplaceVariant,
AllowsTypeRefinement
]> {
let summary = "Generated op for `aten::masked_fill_.Tensor : (Tensor, Tensor, Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchTensorType:$mask,
AnyTorchTensorType:$value
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenMaskedFill_TensorOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 3, 1);
}
void AtenMaskedFill_TensorOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 3, 1);
}
}];
}
def Torch_AtenClampOp : Torch_Op<"aten.clamp", [ def Torch_AtenClampOp : Torch_Op<"aten.clamp", [
AllowsTypeRefinement, AllowsTypeRefinement,
HasValueSemantics, HasValueSemantics,

View File

@ -884,9 +884,9 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
threshold); threshold);
return b.create<arith::SelectOp>(loc, predicate, constantZero, grad); return b.create<arith::SelectOp>(loc, predicate, constantZero, grad);
} }
if (auto maskedFill = dyn_cast<AtenMaskedFillScalarOp>(op)) { if (auto maskedFillScalar = dyn_cast<AtenMaskedFillScalarOp>(op)) {
AtenMaskedFillScalarOp::Adaptor adaptor(operands); AtenMaskedFillScalarOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(maskedFill.getType()) Type dtype = converter->convertType(maskedFillScalar.getType())
.cast<RankedTensorType>() .cast<RankedTensorType>()
.getElementType(); .getElementType();
@ -896,6 +896,17 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
return b.create<arith::SelectOp>(loc, mask, fillValue, input); return b.create<arith::SelectOp>(loc, mask, fillValue, input);
} }
if (auto maskedFillTensor = dyn_cast<AtenMaskedFillTensorOp>(op)) {
AtenMaskedFillScalarOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(maskedFillTensor.getType())
.cast<RankedTensorType>()
.getElementType();
Value input = payloadArgs[0];
Value mask = payloadArgs[1];
Value fillValue = convertScalarToDtype(b, loc, payloadArgs[2], dtype);
return b.create<arith::SelectOp>(loc, mask, fillValue, input);
}
if (auto triu = dyn_cast<AtenTriuOp>(op)) { if (auto triu = dyn_cast<AtenTriuOp>(op)) {
// Check if the rank of the input tensor is valid. // Check if the rank of the input tensor is valid.
@ -970,7 +981,7 @@ public:
AtenEqTensorOp, AtenLtTensorOp, AtenSubScalarOp, AtenAddScalarOp, AtenEqTensorOp, AtenLtTensorOp, AtenSubScalarOp, AtenAddScalarOp,
AtenThresholdOp, AtenThresholdBackwardOp, AtenCloneOp, AtenSinOp, AtenThresholdOp, AtenThresholdBackwardOp, AtenCloneOp, AtenSinOp,
AtenCosOp, AtenNeScalarOp, AtenNegOp, AtenMaskedFillScalarOp, AtenCosOp, AtenNeScalarOp, AtenNegOp, AtenMaskedFillScalarOp,
AtenLogicalOrOp, AtenTriuOp>(op)) AtenMaskedFillTensorOp, AtenLogicalOrOp, AtenTriuOp>(op))
return rewriter.notifyMatchFailure(op, "not a supported elementwise op"); return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
if (failed(verifyLinalgCompatibleTypes(op, rewriter))) if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
@ -1708,7 +1719,8 @@ void mlir::torch::torch_to_linalg::populateUncategorizedPatternsAndLegality(
AtenEqScalarOp, AtenLtScalarOp, AtenLeScalarOp, AtenWhereSelfOp, AtenEqScalarOp, AtenLtScalarOp, AtenLeScalarOp, AtenWhereSelfOp,
AtenGtTensorOp, AtenEqTensorOp, AtenLtTensorOp, AtenThresholdOp, AtenGtTensorOp, AtenEqTensorOp, AtenLtTensorOp, AtenThresholdOp,
AtenThresholdBackwardOp, AtenCloneOp, AtenSinOp, AtenCosOp, AtenThresholdBackwardOp, AtenCloneOp, AtenSinOp, AtenCosOp,
AtenNeScalarOp, AtenMaskedFillScalarOp, AtenLogicalOrOp, AtenTriuOp, AtenRemainderScalarOp>(); AtenNeScalarOp, AtenMaskedFillScalarOp, AtenMaskedFillTensorOp,
AtenLogicalOrOp, AtenTriuOp, AtenRemainderScalarOp>();
patterns.add<ConvertElementwiseOp>(typeConverter, context); patterns.add<ConvertElementwiseOp>(typeConverter, context);
target.addIllegalOp<AtenNllLossForwardOp>(); target.addIllegalOp<AtenNllLossForwardOp>();
patterns.add<ConvertAtenDetachOp>(typeConverter, context); patterns.add<ConvertAtenDetachOp>(typeConverter, context);

View File

@ -658,7 +658,8 @@ void TypeAnalysis::visitOperation(Operation *op,
AtenZero_Op, AtenIndexTensorOp, ValsemVariantAtenIndexPutImplOp, AtenZero_Op, AtenIndexTensorOp, ValsemVariantAtenIndexPutImplOp,
AtenIndexPutOp, ValsemVariantAtenCopyOp, AtenZeroOp, AtenIndexPutOp, ValsemVariantAtenCopyOp, AtenZeroOp,
AtenIndexPutHackedTwinOp, AtenMaskedFillScalarOp, AtenFlipOp, AtenIndexPutHackedTwinOp, AtenMaskedFillScalarOp, AtenFlipOp,
PrimAbsScalarOp, AtenNumpyTOp, AtenTriuOp>(op)) { PrimAbsScalarOp, AtenNumpyTOp, AtenTriuOp, AtenMaskedFillTensorOp>(
op)) {
return incorporateKnowledge(op->getResult(0), operands[0]->getValue()); return incorporateKnowledge(op->getResult(0), operands[0]->getValue());
} }

View File

@ -6214,6 +6214,10 @@ module {
%0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int> %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>
return %0 : !torch.list<int> return %0 : !torch.list<int>
} }
func.func @"__torch_mlir_shape_fn.aten.masked_fill.Tensor"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.list<int>) -> !torch.list<int> {
%0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>
return %0 : !torch.list<int>
}
func.func @"__torch_mlir_shape_fn.aten.zero"(%arg0: !torch.list<int>) -> !torch.list<int> { func.func @"__torch_mlir_shape_fn.aten.zero"(%arg0: !torch.list<int>) -> !torch.list<int> {
return %arg0 : !torch.list<int> return %arg0 : !torch.list<int>
} }

View File

@ -777,6 +777,9 @@ def aten_to_copy(self: List[int], dtype: Optional[int] = None, layout: Option
def atenmasked_fillScalar(self: List[int], mask: List[int], value: float) -> List[int]: def atenmasked_fillScalar(self: List[int], mask: List[int], value: float) -> List[int]:
return upstream_shape_functions.unary(self) return upstream_shape_functions.unary(self)
def atenmasked_fillTensor(self: List[int], mask: List[int], value: List[int]) -> List[int]:
return upstream_shape_functions.unary(self)
def atenzero(self: List[int]) -> List[int]: def atenzero(self: List[int]) -> List[int]:
return self return self

View File

@ -279,6 +279,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
"aten::le.Scalar : (Tensor, Scalar) -> (Tensor)", "aten::le.Scalar : (Tensor, Scalar) -> (Tensor)",
"aten::fmod.Scalar : (Tensor, Scalar) -> (Tensor)", "aten::fmod.Scalar : (Tensor, Scalar) -> (Tensor)",
"aten::masked_fill.Scalar : (Tensor, Tensor, Scalar) -> (Tensor)", "aten::masked_fill.Scalar : (Tensor, Tensor, Scalar) -> (Tensor)",
"aten::masked_fill.Tensor : (Tensor, Tensor, Tensor) -> (Tensor)",
"aten::clamp : (Tensor, Scalar?, Scalar?) -> (Tensor)", "aten::clamp : (Tensor, Scalar?, Scalar?) -> (Tensor)",
"aten::clamp_min : (Tensor, Scalar) -> (Tensor)", "aten::clamp_min : (Tensor, Scalar) -> (Tensor)",
"aten::clamp_max : (Tensor, Scalar) -> (Tensor)", "aten::clamp_max : (Tensor, Scalar) -> (Tensor)",

View File

@ -342,7 +342,8 @@ class EmptyLikeMemoryFormatModule(torch.nn.Module):
([-1, -1, -1, -1], torch.float32, True), ([-1, -1, -1, -1], torch.float32, True),
]) ])
def forward(self, a): def forward(self, a):
return torch.empty_like(a, memory_format=torch.preserve_format).fill_(0) return torch.empty_like(a,
memory_format=torch.preserve_format).fill_(0)
@register_test_case(module_factory=lambda: EmptyLikeMemoryFormatModule()) @register_test_case(module_factory=lambda: EmptyLikeMemoryFormatModule())
@ -1421,3 +1422,25 @@ class MaskedFillScalarFloatValueModule(torch.nn.Module):
def MaskedFillScalarFloatValueModule_basic(module, tu: TestUtils): def MaskedFillScalarFloatValueModule_basic(module, tu: TestUtils):
module.forward(torch.randint(-10, 10, (2, 3)), module.forward(torch.randint(-10, 10, (2, 3)),
torch.randint(0, 2, (2, 3)).to(dtype=torch.bool)) torch.randint(0, 2, (2, 3)).to(dtype=torch.bool))
class MaskedFillTensorFloatValueModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.int64, True),
([-1, -1], torch.bool, True),
([], torch.float32, True),
])
def forward(self, x, mask, value):
return torch.ops.aten.masked_fill(x, mask, value=value)
@register_test_case(module_factory=lambda: MaskedFillTensorFloatValueModule())
def MaskedFillTensorFloatValueModule_basic(module, tu: TestUtils):
module.forward(torch.randint(-10, 10, (2, 3)),
torch.randint(0, 2, (2, 3)).to(dtype=torch.bool), tu.rand())