mirror of https://github.com/llvm/torch-mlir
parent
5ff823ace9
commit
b33543af85
|
@ -378,3 +378,19 @@ class ElementwiseSqrtModule(torch.nn.Module):
|
||||||
@register_test_case(module_factory=lambda: ElementwiseSqrtModule())
|
@register_test_case(module_factory=lambda: ElementwiseSqrtModule())
|
||||||
def ElementwiseSqrtModule_basic(module, tu: TestUtils):
|
def ElementwiseSqrtModule_basic(module, tu: TestUtils):
|
||||||
module.forward(tu.rand(3, 4))
|
module.forward(tu.rand(3, 4))
|
||||||
|
|
||||||
|
class ElementwiseFloorModule(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1], torch.float32, True),
|
||||||
|
])
|
||||||
|
|
||||||
|
def forward(self, a):
|
||||||
|
return torch.floor(a)
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ElementwiseFloorModule())
|
||||||
|
def ElementwiseFloorModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 4))
|
||||||
|
|
|
@ -240,6 +240,34 @@ def Torch_AtenNeg_Op : Torch_Op<"aten.neg_", [
|
||||||
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
|
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_AtenFloorOp : Torch_Op<"aten.floor", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::floor : (Tensor) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchTensorType:$result
|
||||||
|
);
|
||||||
|
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
|
||||||
|
}
|
||||||
|
|
||||||
|
def Torch_AtenFloor_Op : Torch_Op<"aten.floor_", [
|
||||||
|
IsTrailingUnderscoreInplaceVariant,
|
||||||
|
AllowsTypeRefinement
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::floor_ : (Tensor) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchTensorType:$result
|
||||||
|
);
|
||||||
|
let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)";
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_AtenBitwiseNotOp : Torch_Op<"aten.bitwise_not", [
|
def Torch_AtenBitwiseNotOp : Torch_Op<"aten.bitwise_not", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics
|
HasValueSemantics
|
||||||
|
|
|
@ -1278,6 +1278,8 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
|
||||||
return b.create<math::TanhOp>(loc, payloadArgs[0]);
|
return b.create<math::TanhOp>(loc, payloadArgs[0]);
|
||||||
if (isa<AtenExpOp>(op))
|
if (isa<AtenExpOp>(op))
|
||||||
return b.create<math::ExpOp>(loc, payloadArgs[0]);
|
return b.create<math::ExpOp>(loc, payloadArgs[0]);
|
||||||
|
if (isa<AtenFloorOp>(op))
|
||||||
|
return b.create<math::FloorOp>(loc, payloadArgs[0]);
|
||||||
if (isa<AtenLogOp>(op))
|
if (isa<AtenLogOp>(op))
|
||||||
return b.create<math::LogOp>(loc, payloadArgs[0]);
|
return b.create<math::LogOp>(loc, payloadArgs[0]);
|
||||||
if (isa<AtenSqrtOp>(op))
|
if (isa<AtenSqrtOp>(op))
|
||||||
|
@ -1666,7 +1668,7 @@ struct ConvertElementwiseOp : ConversionPattern {
|
||||||
AtenMulTensorOp, AtenDivTensorOp, AtenSubTensorOp,
|
AtenMulTensorOp, AtenDivTensorOp, AtenSubTensorOp,
|
||||||
AtenLerpTensorOp, AtenSigmoidOp, AtenExpOp, AtenMinimumOp,
|
AtenLerpTensorOp, AtenSigmoidOp, AtenExpOp, AtenMinimumOp,
|
||||||
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
|
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
|
||||||
AtenSqrtOp>(op))
|
AtenSqrtOp, AtenFloorOp>(op))
|
||||||
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
|
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
|
||||||
|
|
||||||
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
||||||
|
@ -2803,7 +2805,7 @@ public:
|
||||||
AtenMulTensorOp, AtenDivTensorOp, AtenSubTensorOp,
|
AtenMulTensorOp, AtenDivTensorOp, AtenSubTensorOp,
|
||||||
AtenLerpTensorOp, AtenSigmoidOp, AtenMinimumOp,
|
AtenLerpTensorOp, AtenSigmoidOp, AtenMinimumOp,
|
||||||
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
|
AtenMaximumOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
|
||||||
AtenSqrtOp>();
|
AtenSqrtOp, AtenFloorOp>();
|
||||||
patterns.add<ConvertElementwiseOp>(typeConverter, context);
|
patterns.add<ConvertElementwiseOp>(typeConverter, context);
|
||||||
target.addIllegalOp<AtenUnsqueezeOp>();
|
target.addIllegalOp<AtenUnsqueezeOp>();
|
||||||
patterns.add<ConvertAtenUnsqueezeOp>(typeConverter, context);
|
patterns.add<ConvertAtenUnsqueezeOp>(typeConverter, context);
|
||||||
|
|
|
@ -231,7 +231,7 @@ public:
|
||||||
AtenFill_ScalarOp, AtenDetachOp, AtenMaskedFill_ScalarOp,
|
AtenFill_ScalarOp, AtenDetachOp, AtenMaskedFill_ScalarOp,
|
||||||
AtenCopy_Op, AtenIndexPut_Op, AtenCopy_Op, AtenCumsumOp,
|
AtenCopy_Op, AtenIndexPut_Op, AtenCopy_Op, AtenCumsumOp,
|
||||||
AtenLayerNormOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
|
AtenLayerNormOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
|
||||||
AtenSqrtOp>(op)) {
|
AtenSqrtOp, AtenFloorOp>(op)) {
|
||||||
return getLatticeElement(op->getResult(0)).join(*operands[0]);
|
return getLatticeElement(op->getResult(0)).join(*operands[0]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -445,6 +445,7 @@ def emit_aten_ops(torch_ir_dir: str, registry: Registry):
|
||||||
"aten::exp : (Tensor) -> (Tensor)",
|
"aten::exp : (Tensor) -> (Tensor)",
|
||||||
"aten::cos : (Tensor) -> (Tensor)",
|
"aten::cos : (Tensor) -> (Tensor)",
|
||||||
"aten::neg : (Tensor) -> (Tensor)",
|
"aten::neg : (Tensor) -> (Tensor)",
|
||||||
|
"aten::floor : (Tensor) -> (Tensor)",
|
||||||
"aten::bitwise_not : (Tensor) -> (Tensor)",
|
"aten::bitwise_not : (Tensor) -> (Tensor)",
|
||||||
"aten::add.Tensor : (Tensor, Tensor, Scalar) -> (Tensor)",
|
"aten::add.Tensor : (Tensor, Tensor, Scalar) -> (Tensor)",
|
||||||
"aten::sub.Tensor : (Tensor, Tensor, Scalar) -> (Tensor)",
|
"aten::sub.Tensor : (Tensor, Tensor, Scalar) -> (Tensor)",
|
||||||
|
|
Loading…
Reference in New Issue