mirror of https://github.com/llvm/torch-mlir
[Torch Dialect] emit aten.__or__Tensor Op (#2437)
* emit aten.__or__TensorOp * bug fix * remove convert to stablehlo * code style refinementpull/2443/head snapshot-20230906.953
parent
fcb3b718a5
commit
b411a40b3d
|
@ -452,6 +452,7 @@ STABLEHLO_PASS_SET = {
|
||||||
"ElementwiseBitwiseAndStaticShapeModule_basic",
|
"ElementwiseBitwiseAndStaticShapeModule_basic",
|
||||||
"ElementwiseBitwiseNotInt64Module_basic",
|
"ElementwiseBitwiseNotInt64Module_basic",
|
||||||
"ElementwiseBitwiseNotInt32Module_basic",
|
"ElementwiseBitwiseNotInt32Module_basic",
|
||||||
|
"ElementwiseOrTensorStaticShapeModule_basic",
|
||||||
"ElementwiseBitwiseOrStaticShapeModule_basic",
|
"ElementwiseBitwiseOrStaticShapeModule_basic",
|
||||||
"ElementwiseBitwiseXorStaticShapeModule_basic",
|
"ElementwiseBitwiseXorStaticShapeModule_basic",
|
||||||
"ElementwiseClampModule_basic",
|
"ElementwiseClampModule_basic",
|
||||||
|
@ -985,6 +986,8 @@ TOSA_PASS_SET = {
|
||||||
"ElementwiseBitwiseAndStaticShapeModule_basic",
|
"ElementwiseBitwiseAndStaticShapeModule_basic",
|
||||||
"ElementwiseBitwiseNotInt32Module_basic",
|
"ElementwiseBitwiseNotInt32Module_basic",
|
||||||
"ElementwiseBitwiseNotInt64Module_basic",
|
"ElementwiseBitwiseNotInt64Module_basic",
|
||||||
|
"ElementwiseOrTensorStaticShapeModule_basic",
|
||||||
|
"ElementwiseOrTensorModule_basic",
|
||||||
"ElementwiseBitwiseOrModule_basic",
|
"ElementwiseBitwiseOrModule_basic",
|
||||||
"ElementwiseBitwiseOrStaticShapeModule_basic",
|
"ElementwiseBitwiseOrStaticShapeModule_basic",
|
||||||
"ElementwiseBitwiseXorModule_basic",
|
"ElementwiseBitwiseXorModule_basic",
|
||||||
|
|
|
@ -6141,6 +6141,31 @@ def Torch_Aten__And__TensorOp : Torch_Op<"aten.__and__.Tensor", [
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_Aten__Or__TensorOp : Torch_Op<"aten.__or__.Tensor", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics,
|
||||||
|
ReadOnly
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::__or__.Tensor : (Tensor, Tensor) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self,
|
||||||
|
AnyTorchTensorType:$other
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult Aten__Or__TensorOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 2, 1);
|
||||||
|
}
|
||||||
|
void Aten__Or__TensorOp::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 2, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
let hasCanonicalizer = 1;
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_Aten_SoftmaxOp : Torch_Op<"aten._softmax", [
|
def Torch_Aten_SoftmaxOp : Torch_Op<"aten._softmax", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics,
|
HasValueSemantics,
|
||||||
|
|
|
@ -1124,6 +1124,19 @@ void AtenDivTensorModeOp::getCanonicalizationPatterns(
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
// Aten__Or__TensorOp
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
|
void Aten__Or__TensorOp::getCanonicalizationPatterns(
|
||||||
|
RewritePatternSet &patterns, MLIRContext *context) {
|
||||||
|
patterns.add(+[](Aten__Or__TensorOp op, PatternRewriter &rewriter) {
|
||||||
|
rewriter.replaceOpWithNewOp<AtenBitwiseOrTensorOp>(
|
||||||
|
op, op.getType(), op.getSelf(), op.getOther());
|
||||||
|
return success();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
// AtenScalarImplicitOp
|
// AtenScalarImplicitOp
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
|
@ -7376,6 +7376,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_shape_fn.aten.__or__.Tensor\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
|
||||||
|
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||||
|
" return %0 : !torch.list<int>\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_shape_fn.aten.minimum\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
|
" func.func @\"__torch_mlir_shape_fn.aten.minimum\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
|
@ -9154,6 +9158,14 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %4 = call @__torch__.torch_mlir.dialects.torch.importer.jit_ir.build_tools.library_generator.promote_dtypes(%2, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
" %4 = call @__torch__.torch_mlir.dialects.torch.importer.jit_ir.build_tools.library_generator.promote_dtypes(%2, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
||||||
" return %4 : !torch.int\n"
|
" return %4 : !torch.int\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_dtype_fn.aten.__or__.Tensor\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||||
|
" %0:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
|
" %1:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
|
" %2 = torch.prim.ListConstruct %1#0, %0#0 : (!torch.int, !torch.int) -> !torch.list<optional<int>>\n"
|
||||||
|
" %3 = torch.prim.ListConstruct %1#1, %0#1 : (!torch.int, !torch.int) -> !torch.list<int>\n"
|
||||||
|
" %4 = call @__torch__.torch_mlir.dialects.torch.importer.jit_ir.build_tools.library_generator.promote_dtypes(%2, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
||||||
|
" return %4 : !torch.int\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_dtype_fn.aten.add.Tensor\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>, %arg2: !torch.number) -> !torch.int {\n"
|
" func.func @\"__torch_mlir_dtype_fn.aten.add.Tensor\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>, %arg2: !torch.number) -> !torch.int {\n"
|
||||||
" %0:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
" %0:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
" %1:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
" %1:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
|
|
|
@ -771,6 +771,9 @@ def aten〇atan2〡shape(self: List[int], other: List[int]) -> List[int]:
|
||||||
def aten〇__and__〇Tensor〡shape(self: List[int], other: List[int]) -> List[int]:
|
def aten〇__and__〇Tensor〡shape(self: List[int], other: List[int]) -> List[int]:
|
||||||
return upstream_shape_functions.broadcast(self, other)
|
return upstream_shape_functions.broadcast(self, other)
|
||||||
|
|
||||||
|
def aten〇__or__〇Tensor〡shape(self: List[int], other: List[int]) -> List[int]:
|
||||||
|
return upstream_shape_functions.broadcast(self, other)
|
||||||
|
|
||||||
def aten〇minimum〡shape(self: List[int], other: List[int]) -> List[int]:
|
def aten〇minimum〡shape(self: List[int], other: List[int]) -> List[int]:
|
||||||
return upstream_shape_functions.broadcast(self, other)
|
return upstream_shape_functions.broadcast(self, other)
|
||||||
|
|
||||||
|
@ -2223,6 +2226,14 @@ def aten〇__and__〇Tensor〡dtype(self_rank_dtype: Tuple[int, int], other_rank
|
||||||
dtypes = [self_dtype, other_dtype]
|
dtypes = [self_dtype, other_dtype]
|
||||||
return promote_dtypes(ranks, dtypes)
|
return promote_dtypes(ranks, dtypes)
|
||||||
|
|
||||||
|
@check_dtype_function(_check_two_tensor_op())
|
||||||
|
def aten〇__or__〇Tensor〡dtype(self_rank_dtype: Tuple[int, int], other_rank_dtype: Tuple[int, int]) -> int:
|
||||||
|
other_rank, other_dtype = other_rank_dtype
|
||||||
|
self_rank, self_dtype = self_rank_dtype
|
||||||
|
ranks: List[Optional[int]] = [self_rank, other_rank]
|
||||||
|
dtypes = [self_dtype, other_dtype]
|
||||||
|
return promote_dtypes(ranks, dtypes)
|
||||||
|
|
||||||
@check_dtype_function(_check_two_tensor_op())
|
@check_dtype_function(_check_two_tensor_op())
|
||||||
def aten〇add〇Tensor〡dtype(self_rank_dtype: Tuple[int, int], other_rank_dtype: Tuple[int, int], alpha: Union[int, float, complex] = 1) -> int:
|
def aten〇add〇Tensor〡dtype(self_rank_dtype: Tuple[int, int], other_rank_dtype: Tuple[int, int], alpha: Union[int, float, complex] = 1) -> int:
|
||||||
other_rank, other_dtype = other_rank_dtype
|
other_rank, other_dtype = other_rank_dtype
|
||||||
|
|
|
@ -456,6 +456,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
||||||
emit("aten::logsumexp : (Tensor, int[], bool) -> (Tensor)")
|
emit("aten::logsumexp : (Tensor, int[], bool) -> (Tensor)")
|
||||||
emit("aten::mean.dim : (Tensor, int[]?, bool, int?) -> (Tensor)")
|
emit("aten::mean.dim : (Tensor, int[]?, bool, int?) -> (Tensor)")
|
||||||
emit("aten::__and__.Tensor : (Tensor, Tensor) -> (Tensor)")
|
emit("aten::__and__.Tensor : (Tensor, Tensor) -> (Tensor)")
|
||||||
|
emit("aten::__or__.Tensor : (Tensor, Tensor) -> (Tensor)", has_canonicalizer=True)
|
||||||
emit("aten::_softmax : (Tensor, int, bool) -> (Tensor)")
|
emit("aten::_softmax : (Tensor, int, bool) -> (Tensor)")
|
||||||
emit("aten::mean : (Tensor, int?) -> (Tensor)")
|
emit("aten::mean : (Tensor, int?) -> (Tensor)")
|
||||||
emit("aten::std : (Tensor, bool) -> (Tensor)")
|
emit("aten::std : (Tensor, bool) -> (Tensor)")
|
||||||
|
|
|
@ -2024,6 +2024,56 @@ def ElementwiseBitwiseOrStaticShapeModule_basic(module, tu: TestUtils):
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class ElementwiseOrTensorModule(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1], torch.int32, True),
|
||||||
|
([-1, -1], torch.int64, True),
|
||||||
|
])
|
||||||
|
def forward(self, x, y):
|
||||||
|
return torch.ops.aten.__or__(x, y)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ElementwiseOrTensorModule())
|
||||||
|
def ElementwiseOrTensorModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(
|
||||||
|
tu.randint(3, 4, low=-10, high=10).to(torch.int32),
|
||||||
|
tu.randint(3, 4, low=-10, high=10))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class ElementwiseOrTensorStaticShapeModule(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([3, 4], torch.int32, True),
|
||||||
|
([4], torch.int64, True),
|
||||||
|
])
|
||||||
|
def forward(self, x, y):
|
||||||
|
return torch.ops.aten.__or__(x, y)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ElementwiseOrTensorStaticShapeModule())
|
||||||
|
def ElementwiseOrTensorStaticShapeModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(
|
||||||
|
tu.randint(3, 4, low=-10, high=10).to(torch.int32),
|
||||||
|
tu.randint(4, low=-10, high=10))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
class ElementwiseBitwiseXorModule(torch.nn.Module):
|
class ElementwiseBitwiseXorModule(torch.nn.Module):
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
|
Loading…
Reference in New Issue