[onnx] Lowering `onnx.dequantize_linear` to `torch` (#2759)

We can make the per-tensor version of the operation to the dequantize
operation via marking with the make quantized tensor component. This
introductions the `qint*` and `quint*` tensor type that can be lowered
to teh appropriate dequantization behavior during the torch-to-linalg
conversion.
pull/2775/head
Rob Suderman 2024-01-18 16:47:21 -08:00 committed by GitHub
parent bd11877f6f
commit b5387c0f29
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 96 additions and 1 deletions

View File

@ -1156,6 +1156,59 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
binder.op, resultType, transposedInput, reshapeSizesList);
return success();
});
patterns.onOp(
"DequantizeLinear", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
llvm::SmallVector<Value> operands;
if (binder.tensorOperands(operands, 3) ||
binder.tensorResultType(resultType))
return failure();
Value operand = operands[0];
Value scale = operands[1];
Value zeropoint = operands[2];
auto operandTy = operand.getType().cast<Torch::ValueTensorType>();
auto scaleTy = scale.getType().dyn_cast<Torch::ValueTensorType>();
if (!scaleTy || !scaleTy.hasSizes())
return rewriter.notifyMatchFailure(binder.op, "requires known rank");
if (!resultType.hasDtype())
return rewriter.notifyMatchFailure(binder.op,
"requires known resulty dtype");
if (scaleTy.getSizes().size() == 0) {
Type qTy = operandTy.getDtype();
if (qTy.isUnsignedInteger(8)) {
qTy = rewriter.getType<Torch::QUInt8Type>();
} else if (qTy.isSignedInteger(8)) {
qTy = rewriter.getType<Torch::QInt8Type>();
} else if (qTy.isSignedInteger(32)) {
qTy = rewriter.getType<Torch::QInt32Type>();
} else {
return rewriter.notifyMatchFailure(binder.op,
"unsupported result dtype");
}
auto qTensorTy = rewriter.getType<Torch::ValueTensorType>(
resultType.getOptionalSizes(), qTy);
scale = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(), scale);
zeropoint = rewriter.create<Torch::AtenItemOp>(
binder.getLoc(), rewriter.getType<Torch::IntType>(), zeropoint);
auto quantize =
rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
binder.getLoc(), qTensorTy, operand, scale, zeropoint);
rewriter.replaceOpWithNewOp<Torch::AtenDequantizeSelfOp>(
binder.op, resultType, quantize);
return success();
}
return failure();
});
patterns.onOp("Div", 14,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;

View File

@ -1,4 +1,4 @@
// RUN: torch-mlir-opt <%s -convert-torch-onnx-to-torch | FileCheck %s
// RUN: torch-mlir-opt <%s --split-input-file -convert-torch-onnx-to-torch | FileCheck %s
// Generally, the test cases accumulated here come from running the importer
// over all included backend tests that involve simple ops with no model
// level constants. This is a pragmatic choice which lets us have a lot
@ -438,6 +438,48 @@ func.func @test_cos(%arg0: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5
return %0 : !torch.vtensor<[3,4,5],f32>
}
// -----
// CHECK-LABEL: @test_dequantizelinear_si8
func.func @test_dequantizelinear_si8(%arg0: !torch.vtensor<[6],si8>, %arg1: !torch.vtensor<[],f32>, %arg2: !torch.vtensor<[],si8>) -> !torch.vtensor<[6],f32> attributes {torch.onnx_meta.ir_version = 9 : si64, torch.onnx_meta.opset_version = 19 : si64} {
%0 = torch.operator "onnx.DequantizeLinear"(%arg0, %arg1, %arg2) : (!torch.vtensor<[6],si8>, !torch.vtensor<[],f32>, !torch.vtensor<[],si8>) -> !torch.vtensor<[6],f32>
// CHECK: %[[SCALE:.+]] = torch.aten.item %arg1 : !torch.vtensor<[],f32> -> !torch.float
// CHECK: %[[ZP:.+]] = torch.aten.item %arg2 : !torch.vtensor<[],si8> -> !torch.int
// CHECK: %[[MAKE:.+]] = torch.aten._make_per_tensor_quantized_tensor %arg0, %[[SCALE]], %[[ZP]]
// CHECK: %[[DEQ:.+]] = torch.aten.dequantize.self %[[MAKE]]
// CHECK: return %[[DEQ]]
return %0 : !torch.vtensor<[6],f32>
}
// -----
// CHECK-LABEL: @test_dequantizelinear_ui8
func.func @test_dequantizelinear_ui8(%arg0: !torch.vtensor<[6],ui8>, %arg1: !torch.vtensor<[],f32>, %arg2: !torch.vtensor<[],ui8>) -> !torch.vtensor<[6],f32> attributes {torch.onnx_meta.ir_version = 9 : si64, torch.onnx_meta.opset_version = 19 : si64} {
%0 = torch.operator "onnx.DequantizeLinear"(%arg0, %arg1, %arg2) : (!torch.vtensor<[6],ui8>, !torch.vtensor<[],f32>, !torch.vtensor<[],ui8>) -> !torch.vtensor<[6],f32>
// CHECK: %[[SCALE:.+]] = torch.aten.item %arg1 : !torch.vtensor<[],f32> -> !torch.float
// CHECK: %[[ZP:.+]] = torch.aten.item %arg2 : !torch.vtensor<[],ui8> -> !torch.int
// CHECK: %[[MAKE:.+]] = torch.aten._make_per_tensor_quantized_tensor %arg0, %[[SCALE]], %[[ZP]]
// CHECK: %[[DEQ:.+]] = torch.aten.dequantize.self %[[MAKE]]
// CHECK: return %[[DEQ]]
return %0 : !torch.vtensor<[6],f32>
}
// -----
// CHECK-LABEL: @test_dequantizelinear_i32
func.func @test_dequantizelinear_i32(%arg0: !torch.vtensor<[6],si32>, %arg1: !torch.vtensor<[],f32>, %arg2: !torch.vtensor<[],si32>) -> !torch.vtensor<[6],f32> attributes {torch.onnx_meta.ir_version = 9 : si64, torch.onnx_meta.opset_version = 19 : si64} {
%0 = torch.operator "onnx.DequantizeLinear"(%arg0, %arg1, %arg2) : (!torch.vtensor<[6],si32>, !torch.vtensor<[],f32>, !torch.vtensor<[],si32>) -> !torch.vtensor<[6],f32>
// CHECK: %[[SCALE:.+]] = torch.aten.item %arg1 : !torch.vtensor<[],f32> -> !torch.float
// CHECK: %[[ZP:.+]] = torch.aten.item %arg2 : !torch.vtensor<[],si32> -> !torch.int
// CHECK: %[[MAKE:.+]] = torch.aten._make_per_tensor_quantized_tensor %arg0, %[[SCALE]], %[[ZP]]
// CHECK: %[[DEQ:.+]] = torch.aten.dequantize.self %[[MAKE]]
// CHECK: return %[[DEQ]]
return %0 : !torch.vtensor<[6],f32>
}
// -----
// CHECK-LABEL: @test_div_bcast
func.func @test_div_bcast(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[5],f32>) -> !torch.vtensor<[3,4,5],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 14 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: torch.aten.div.Tensor %arg0, %arg1 : !torch.vtensor<[3,4,5],f32>, !torch.vtensor<[5],f32> -> !torch.vtensor<[3,4,5],f32>