mirror of https://github.com/llvm/torch-mlir
[cleanup] Fix a few more llvm::None -> std::nullopt
parent
8c3774bb2a
commit
b60da34f84
|
@ -61,7 +61,7 @@ Value convertTensorToDtype(PatternRewriter &rewriter, Location loc, Value input,
|
|||
bool isBuiltInType(Type type);
|
||||
|
||||
// Helper funtion to get rank of `Base tensor type`.
|
||||
// llvm::None is returned if the tensorRank can't be determined.
|
||||
// std::nullopt is returned if the tensorRank can't be determined.
|
||||
Optional<unsigned> getTensorRank(Value tensor);
|
||||
|
||||
bool isViewLikeOp(Operation *op);
|
||||
|
|
|
@ -58,7 +58,7 @@ llvm::Optional<Value> getConstTensor(PatternRewriter &rewriter, Operation *op,
|
|||
|
||||
if (vec.size() != num_total_elements) {
|
||||
op->emitOpError("getConstTensor(): number of elements mismatch.");
|
||||
return llvm::None;
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
auto const_type =
|
||||
|
@ -82,7 +82,7 @@ llvm::Optional<Value> getConstTensor<APInt>(PatternRewriter &rewriter,
|
|||
|
||||
if (vec.size() != num_total_elements) {
|
||||
op->emitOpError("getConstTensor(): number of elements mismatch.");
|
||||
return llvm::None;
|
||||
return std::nullopt;
|
||||
}
|
||||
auto const_type = RankedTensorType::get(
|
||||
shape, rewriter.getIntegerType(vec[0].getBitWidth()));
|
||||
|
@ -105,7 +105,7 @@ llvm::Optional<Value> getConstTensor<float>(PatternRewriter &rewriter,
|
|||
|
||||
if (vec.size() != num_total_elements) {
|
||||
op->emitOpError("getConstTensor(): number of elements mismatch.");
|
||||
return llvm::None;
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
auto const_type = RankedTensorType::get(shape, rewriter.getF32Type());
|
||||
|
@ -127,7 +127,7 @@ getConstTensor<double>(PatternRewriter &rewriter, Operation *op,
|
|||
|
||||
if (vec.size() != num_total_elements) {
|
||||
op->emitOpError("getConstTensor(): number of elements mismatch.");
|
||||
return llvm::None;
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
auto const_type = RankedTensorType::get(shape, rewriter.getF64Type());
|
||||
|
|
|
@ -77,16 +77,17 @@ getMaxInDim(ConversionPatternRewriter &rewriter, Operation *op, Value &input,
|
|||
size_t dimSizeIndexBits) {
|
||||
auto inputTy = input.getType().template cast<RankedTensorType>();
|
||||
if (!inputTy) {
|
||||
return llvm::None;
|
||||
return std::nullopt;
|
||||
}
|
||||
if (!inputTy.getElementType().isIntOrFloat()) {
|
||||
return llvm::None;
|
||||
return std::nullopt;
|
||||
}
|
||||
auto inputShape = inputTy.getShape();
|
||||
auto inputElemTy = inputTy.getElementType();
|
||||
|
||||
Value initValue = createInitialValueForReduceOp(op, inputElemTy, rewriter);
|
||||
if (!initValue) return llvm::None;
|
||||
if (!initValue)
|
||||
return std::nullopt;
|
||||
Value initIndex;
|
||||
if (dimSizeIndexBits == 32) {
|
||||
initIndex = mhlo::getConstTensor<int32_t>(rewriter, op, {0}, {}).value();
|
||||
|
|
|
@ -269,7 +269,7 @@ LogicalResult ConvertAtenOp<AtenSliceTensorOp>::matchAndRewrite(
|
|||
|
||||
auto getOptionalVal = [&](Value val) -> llvm::Optional<Value> {
|
||||
if (val.getType().isa<Torch::NoneType>()) {
|
||||
return llvm::None;
|
||||
return std::nullopt;
|
||||
} else {
|
||||
return val;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue