[MLIR][TORCH] Add E2E support for aten.div.Tensor_mode op

This commit adds lowering of `aten.div.Tensor_mode` op.
This commit also fixes formatting for the test file elementwise.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
pull/908/head
Vivek Khandelwal 2022-06-03 12:33:34 +05:30
parent a11ef674a7
commit b95b3d844d
7 changed files with 367 additions and 48 deletions

View File

@ -1029,6 +1029,55 @@ def Torch_AtenLogicalOr_Op : Torch_Op<"aten.logical_or_", [
}];
}
def Torch_AtenDivTensorModeOp : Torch_Op<"aten.div.Tensor_mode", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::div.Tensor_mode : (Tensor, Tensor, str?) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchTensorType:$other,
AnyTorchOptionalStringType:$rounding_mode
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenDivTensorModeOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 3, 1);
}
void AtenDivTensorModeOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 3, 1);
}
}];
}
def Torch_AtenDiv_TensorModeOp : Torch_Op<"aten.div_.Tensor_mode", [
IsTrailingUnderscoreInplaceVariant,
AllowsTypeRefinement
]> {
let summary = "Generated op for `aten::div_.Tensor_mode : (Tensor, Tensor, str?) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchTensorType:$other,
AnyTorchOptionalStringType:$rounding_mode
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenDiv_TensorModeOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 3, 1);
}
void AtenDiv_TensorModeOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 3, 1);
}
}];
}
def Torch_AtenLerpTensorOp : Torch_Op<"aten.lerp.Tensor", [
AllowsTypeRefinement,
HasValueSemantics,

View File

@ -447,12 +447,54 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
Type dtype = converter->convertType(div.getType())
.cast<RankedTensorType>()
.getElementType();
if (!dtype.isa<mlir::FloatType>())
if (!dtype.isa<mlir::FloatType>()) {
div.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
return b.create<arith::DivFOp>(loc, lhs, rhs);
}
if (auto divTensorMode = dyn_cast<AtenDivTensorModeOp>(op)) {
AtenDivTensorModeOp::Adaptor adaptor(operands);
Type dtype = converter->convertType(divTensorMode.getType())
.cast<RankedTensorType>()
.getElementType();
if (!dtype.isa<mlir::FloatType>()) {
divTensorMode.emitError("unimplemented: non-floating point dtype");
return nullptr;
}
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
Value div = b.create<arith::DivFOp>(loc, lhs, rhs);
if (divTensorMode.rounding_mode().getType().isa<Torch::NoneType>())
return div;
std::string roundingMode;
if (!matchPattern(divTensorMode.rounding_mode(),
m_TorchConstantStr(roundingMode))) {
divTensorMode.emitError("only support constant str rounding mode");
return nullptr;
}
if (roundingMode == "trunc") {
// "trunc" - rounds the results of the division towards zero. Equivalent
// to C-style integer division.
Value ceil = b.create<math::CeilOp>(loc, div);
Value floor = b.create<math::FloorOp>(loc, div);
Value cstZero = b.create<arith::ConstantOp>(loc, b.getZeroAttr(dtype));
Value pred =
b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULT, div, cstZero);
return b.create<arith::SelectOp>(loc, pred, ceil, floor);
}
if (roundingMode == "floor") {
// "floor" - rounds the results of the division down. Equivalent to
// floor division in Python (the // operator)
return b.create<math::FloorOp>(loc, div);
}
divTensorMode.emitError("invalid rounding mode");
return nullptr;
}
if (auto pow = dyn_cast<AtenPowTensorScalarOp>(op)) {
if (!pow.getType()
.cast<ValueTensorType>()
@ -845,17 +887,17 @@ public:
ConversionPatternRewriter &rewriter) const override {
if (!isa<AtenTanhOp, AtenReluOp, AtenLeakyReluOp, AtenGeluOp,
AtenGeluBackwardOp, AtenAddTensorOp, AtenMulTensorOp,
AtenDivTensorOp, AtenSubTensorOp, AtenLerpTensorOp, AtenSigmoidOp,
AtenExpOp, AtenMinimumOp, AtenMaximumOp, AtenToDtypeOp,
AtenClampOp, AtenRsubScalarOp, AtenMulScalarOp, AtenLogOp,
AtenErfOp, AtenSqrtOp, AtenFloorOp, AtenPowTensorScalarOp,
AtenLog2Op, AtenRsqrtOp, AtenDivScalarOp, AtenAbsOp,
AtenReciprocalOp, AtenBitwiseAndTensorOp, AtenGtScalarOp,
AtenGeScalarOp, AtenEqScalarOp, AtenLtScalarOp, AtenLeScalarOp,
AtenWhereSelfOp, AtenCeilOp, AtenGtTensorOp, AtenEqTensorOp,
AtenLtTensorOp, AtenSubScalarOp, AtenAddScalarOp, AtenThresholdOp,
AtenThresholdBackwardOp, AtenCloneOp, AtenSinOp, AtenCosOp,
AtenNeScalarOp, AtenNegOp, AtenMaskedFillScalarOp,
AtenDivTensorOp, AtenDivTensorModeOp, AtenSubTensorOp,
AtenLerpTensorOp, AtenSigmoidOp, AtenExpOp, AtenMinimumOp,
AtenMaximumOp, AtenToDtypeOp, AtenClampOp, AtenRsubScalarOp,
AtenMulScalarOp, AtenLogOp, AtenErfOp, AtenSqrtOp, AtenFloorOp,
AtenPowTensorScalarOp, AtenLog2Op, AtenRsqrtOp, AtenDivScalarOp,
AtenAbsOp, AtenReciprocalOp, AtenBitwiseAndTensorOp,
AtenGtScalarOp, AtenGeScalarOp, AtenEqScalarOp, AtenLtScalarOp,
AtenLeScalarOp, AtenWhereSelfOp, AtenCeilOp, AtenGtTensorOp,
AtenEqTensorOp, AtenLtTensorOp, AtenSubScalarOp, AtenAddScalarOp,
AtenThresholdOp, AtenThresholdBackwardOp, AtenCloneOp, AtenSinOp,
AtenCosOp, AtenNeScalarOp, AtenNegOp, AtenMaskedFillScalarOp,
AtenLogicalOrOp>(op))
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
@ -1585,15 +1627,15 @@ void mlir::torch::torch_to_linalg::populateUncategorizedPatternsAndLegality(
MLIRContext *context = patterns.getContext();
target.addIllegalOp<
AtenTanhOp, AtenReluOp, AtenLeakyReluOp, AtenGeluOp, AtenGeluBackwardOp,
AtenAddTensorOp, AtenMulTensorOp, AtenDivTensorOp, AtenSubTensorOp,
AtenLerpTensorOp, AtenSigmoidOp, AtenMinimumOp, AtenMaximumOp,
AtenToDtypeOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp, AtenErfOp,
AtenSqrtOp, AtenFloorOp, AtenCeilOp, AtenPowTensorScalarOp, AtenLog2Op,
AtenRsqrtOp, AtenAbsOp, AtenReciprocalOp, AtenBitwiseAndTensorOp,
AtenGtScalarOp, AtenGeScalarOp, AtenEqScalarOp, AtenLtScalarOp,
AtenLeScalarOp, AtenWhereSelfOp, AtenGtTensorOp, AtenEqTensorOp,
AtenLtTensorOp, AtenThresholdOp, AtenThresholdBackwardOp, AtenCloneOp,
AtenSinOp, AtenCosOp, AtenNeScalarOp, AtenMaskedFillScalarOp,
AtenAddTensorOp, AtenMulTensorOp, AtenDivTensorOp, AtenDivTensorModeOp,
AtenSubTensorOp, AtenLerpTensorOp, AtenSigmoidOp, AtenMinimumOp,
AtenMaximumOp, AtenToDtypeOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp,
AtenErfOp, AtenSqrtOp, AtenFloorOp, AtenCeilOp, AtenPowTensorScalarOp,
AtenLog2Op, AtenRsqrtOp, AtenAbsOp, AtenReciprocalOp,
AtenBitwiseAndTensorOp, AtenGtScalarOp, AtenGeScalarOp, AtenEqScalarOp,
AtenLtScalarOp, AtenLeScalarOp, AtenWhereSelfOp, AtenGtTensorOp,
AtenEqTensorOp, AtenLtTensorOp, AtenThresholdOp, AtenThresholdBackwardOp,
AtenCloneOp, AtenSinOp, AtenCosOp, AtenNeScalarOp, AtenMaskedFillScalarOp,
AtenLogicalOrOp>();
patterns.add<ConvertElementwiseOp>(typeConverter, context);
target.addIllegalOp<AtenNllLossForwardOp>();

View File

@ -701,8 +701,8 @@ ChangeResult TypeAnalyzer::visitOperation(
// Promote the two dtypes assuming possibly-zero rank.
if (isa<AtenAddTensorOp, AtenSubTensorOp, AtenMulTensorOp, AtenDivTensorOp,
Aten__And__TensorOp, AtenMinimumOp, AtenMaximumOp,
AtenBitwiseAndTensorOp, AtenThresholdBackwardOp>(op)) {
AtenDivTensorModeOp, Aten__And__TensorOp, AtenMinimumOp,
AtenMaximumOp, AtenBitwiseAndTensorOp, AtenThresholdBackwardOp>(op)) {
auto knowledge =
ValueKnowledge::getTensorPessimisticValueState(op->getContext());
knowledge.dtype = getPromotedResultType(

View File

@ -2196,6 +2196,10 @@ module {
%0 = call @__torch__.torch_mlir.dialects.torch.importer.jit_ir.build_tools.upstream_shape_helpers.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>
return %0 : !torch.list<int>
}
func.func @"__torch_mlir_shape_fn.aten.div.Tensor_mode"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.optional<str>) -> !torch.list<int> {
%0 = call @__torch__.torch_mlir.dialects.torch.importer.jit_ir.build_tools.upstream_shape_helpers.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>
return %0 : !torch.list<int>
}
func.func @"__torch_mlir_shape_fn.aten.__and__.Tensor"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {
%0 = call @__torch__.torch_mlir.dialects.torch.importer.jit_ir.build_tools.upstream_shape_helpers.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>
return %0 : !torch.list<int>

View File

@ -711,6 +711,9 @@ def atenmulTensor(self: List[int], other: List[int]) -> List[int]:
def atendivTensor(self: List[int], other: List[int]) -> List[int]:
return upstream_shape_helpers.broadcast(self, other)
def atendivTensor_mode(self: List[int], other: List[int], rounding_mode: Optional[str]) -> List[int]:
return upstream_shape_helpers.broadcast(self, other)
def aten__and__Tensor(self: List[int], other: List[int]) -> List[int]:
return upstream_shape_helpers.broadcast(self, other)

View File

@ -250,6 +250,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
"aten::mul.Tensor : (Tensor, Tensor) -> (Tensor)",
"aten::div.Tensor : (Tensor, Tensor) -> (Tensor)",
"aten::logical_or : (Tensor, Tensor) -> (Tensor)",
"aten::div.Tensor_mode : (Tensor, Tensor, str?) -> (Tensor)",
"aten::lerp.Tensor : (Tensor, Tensor, Tensor) -> (Tensor)",
"aten::eq.Tensor : (Tensor, Tensor) -> (Tensor)",
"aten::gt.Tensor : (Tensor, Tensor) -> (Tensor)",

View File

@ -18,7 +18,9 @@ from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export
# ==============================================================================
class ElementwiseUnaryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -35,9 +37,12 @@ class ElementwiseUnaryModule(torch.nn.Module):
def ElementwiseUnaryModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseUnaryIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -54,9 +59,12 @@ class ElementwiseUnaryIntModule(torch.nn.Module):
def ElementwiseUnaryIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(1, 10, (3, 4), dtype=torch.int32))
# ==============================================================================
class ElementwiseBinaryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -74,9 +82,12 @@ class ElementwiseBinaryModule(torch.nn.Module):
def ElementwiseBinaryModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4), tu.rand(4))
# ==============================================================================
class ElementwiseBinaryStaticShapeModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -95,9 +106,12 @@ class ElementwiseBinaryStaticShapeModule(torch.nn.Module):
def ElementwiseBinaryStaticShapeModule_basic(module, tu: TestUtils):
module.forward(tu.rand(5, 4, 3, 3, 1), tu.rand(4, 3, 1, 2))
# ==============================================================================
class ElementwiseTernaryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -116,9 +130,12 @@ class ElementwiseTernaryModule(torch.nn.Module):
def ElementwiseTernaryModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5), tu.rand(4, 5), tu.rand(5))
# ==============================================================================
class ElementwiseWhereSelfModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -137,9 +154,12 @@ class ElementwiseWhereSelfModule(torch.nn.Module):
def ElementwiseWhereSelfModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5), tu.rand(4, 5), tu.rand(5))
# ==============================================================================
class ElementwiseWhereScalarModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -156,9 +176,12 @@ class ElementwiseWhereScalarModule(torch.nn.Module):
def ElementwiseWhereScalarModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5))
# ==============================================================================
class ElementwiseWhereScalarOtherModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -176,9 +199,12 @@ class ElementwiseWhereScalarOtherModule(torch.nn.Module):
def ElementwiseWhereScalarOtherModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5).double(), tu.rand(4, 5).double())
# ==============================================================================
class ElementwiseWhereScalarSelfModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -196,11 +222,14 @@ class ElementwiseWhereScalarSelfModule(torch.nn.Module):
def ElementwiseWhereScalarSelfModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5).double(), tu.rand(4, 5).double())
# ==============================================================================
# Addition is an interesting special case of a binary op, because under the hood
# it carries a third scalar "alpha" parameter, which needs special handling.
class ElementwiseAddModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -218,9 +247,12 @@ class ElementwiseAddModule(torch.nn.Module):
def ElementwiseAddModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4), tu.rand())
# ==============================================================================
class ElementwiseUnsqueezeBroadcastModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -239,9 +271,12 @@ class ElementwiseUnsqueezeBroadcastModule(torch.nn.Module):
def ElementwiseUnsqueezeBroadcastModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4), tu.rand())
# ==============================================================================
class ElementwiseUnsqueezeNegDimsModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -261,9 +296,12 @@ class ElementwiseUnsqueezeNegDimsModule(torch.nn.Module):
def ElementwiseUnsqueezeNegDimsModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4, 3))
# ==============================================================================
class ElementwiseFlattenBroadcastModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -281,9 +319,12 @@ class ElementwiseFlattenBroadcastModule(torch.nn.Module):
def ElementwiseFlattenBroadcastModule_basic(module, tu: TestUtils):
module.forward(tu.rand(6), tu.rand())
# ==============================================================================
class ElementwiseReluModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -300,9 +341,12 @@ class ElementwiseReluModule(torch.nn.Module):
def ElementwiseReluModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4, 2) - 0.5)
# ==============================================================================
class ElementwiseLeakyReluModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -319,9 +363,12 @@ class ElementwiseLeakyReluModule(torch.nn.Module):
def ElementwiseLeakyReluModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4, 2) - 0.5)
# ==============================================================================
class ElementwiseGeluModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.gelu = torch.nn.GELU()
@ -339,9 +386,12 @@ class ElementwiseGeluModule(torch.nn.Module):
def ElementwiseGeluModule_basic(module, tu: TestUtils):
module.forward(2 * tu.rand(5, 3) - 0.5)
# ==============================================================================
class ElementwiseSigmoidModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -358,9 +408,12 @@ class ElementwiseSigmoidModule(torch.nn.Module):
def ElementwiseSigmoidModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 5))
# ==============================================================================
class ElementwiseSigmoidIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -377,9 +430,12 @@ class ElementwiseSigmoidIntModule(torch.nn.Module):
def ElementwiseSigmoidIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(1, 10, (3, 5), dtype=torch.int32))
# ==============================================================================
class ElementwiseMinimumModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -397,9 +453,12 @@ class ElementwiseMinimumModule(torch.nn.Module):
def ElementwiseMinimumModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 5), tu.rand(3, 5))
# ==============================================================================
class ElementwiseMinimumIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -417,9 +476,12 @@ class ElementwiseMinimumIntModule(torch.nn.Module):
def ElementwiseMinimumIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(10, (3, 5)), torch.randint(10, (3, 5)))
# ==============================================================================
class ElementwiseMaximumModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -437,9 +499,12 @@ class ElementwiseMaximumModule(torch.nn.Module):
def ElementwiseMaximumModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 5), tu.rand(3, 5))
# ==============================================================================
class ElementwiseMaximumIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -457,9 +522,12 @@ class ElementwiseMaximumIntModule(torch.nn.Module):
def ElementwiseMaximumIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(10, (3, 5)), torch.randint(10, (3, 5)))
# ==============================================================================
class ElementwiseClampModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -531,9 +599,12 @@ class ElementwiseClampMaxModule(torch.nn.Module):
def ElementwiseClampMaxModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 5, low=-10, high=10))
# ==============================================================================
class RsubModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -550,9 +621,12 @@ class RsubModule(torch.nn.Module):
def RsubModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class RsubModule_noalpha(torch.nn.Module):
def __init__(self):
super().__init__()
@ -569,9 +643,12 @@ class RsubModule_noalpha(torch.nn.Module):
def RsubModule_noalpha_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseMulScalarIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -588,9 +665,12 @@ class ElementwiseMulScalarIntModule(torch.nn.Module):
def ElementwiseMulScalarModule_int(module, tu: TestUtils):
module.forward(torch.randint(10, (3, 4)))
# ==============================================================================
class ElementwiseMulScalarFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -607,9 +687,12 @@ class ElementwiseMulScalarFloatModule(torch.nn.Module):
def ElementwiseMulScalarModule_float(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseMulScalarModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -626,9 +709,12 @@ class ElementwiseMulScalarModule(torch.nn.Module):
def ElementwiseMulScalarModule_basic(module, tu: TestUtils):
module.forward(torch.randint(10, (3, 4), dtype=torch.int32))
# ==============================================================================
class ElementwiseMulTensorFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -646,9 +732,12 @@ class ElementwiseMulTensorFloatModule(torch.nn.Module):
def ElementwiseMulTensorFloatModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4), tu.rand(4).type(torch.float64))
# ==============================================================================
class ElementwiseMulTensorIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -667,9 +756,12 @@ def ElementwiseMulTensorIntModule_basic(module, tu: TestUtils):
module.forward(
torch.randint(10, [4]).type(torch.int32), torch.randint(10, [4]))
# ==============================================================================
class ElementwiseLogModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -686,9 +778,12 @@ class ElementwiseLogModule(torch.nn.Module):
def ElementwiseLogModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseLogIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -705,9 +800,12 @@ class ElementwiseLogIntModule(torch.nn.Module):
def ElementwiseLogIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(1, 10, (3, 4), dtype=torch.int32))
# ==============================================================================
class ElementwiseErfModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -724,9 +822,12 @@ class ElementwiseErfModule(torch.nn.Module):
def ElementwiseErfModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseErfIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -743,10 +844,12 @@ class ElementwiseErfIntModule(torch.nn.Module):
def ElementwiseErfIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(1, 10, (3, 4), dtype=torch.int32))
# ==============================================================================
class ElementwiseSqrtModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -755,7 +858,6 @@ class ElementwiseSqrtModule(torch.nn.Module):
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.sqrt(a)
@ -764,9 +866,12 @@ class ElementwiseSqrtModule(torch.nn.Module):
def ElementwiseSqrtModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseSqrtIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -775,7 +880,6 @@ class ElementwiseSqrtIntModule(torch.nn.Module):
None,
([-1, -1], torch.int32, True),
])
def forward(self, a):
return torch.sqrt(a)
@ -784,17 +888,20 @@ class ElementwiseSqrtIntModule(torch.nn.Module):
def ElementwiseSqrtIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(1, 10, (3, 4), dtype=torch.int32))
# ==============================================================================
class ElementwiseFloorModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.floor(a)
@ -803,17 +910,20 @@ class ElementwiseFloorModule(torch.nn.Module):
def ElementwiseFloorModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseCeilModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.ceil(a)
@ -822,17 +932,20 @@ class ElementwiseCeilModule(torch.nn.Module):
def ElementwiseCeilModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwisePowModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.pow(a, 2.0)
@ -841,17 +954,17 @@ class ElementwisePowModule(torch.nn.Module):
def ElementwisePowModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseToDtypeF32ToI64Module(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True)
])
@annotate_args([None, ([-1, -1], torch.float32, True)])
def forward(self, x):
return x.to(torch.int64)
@ -860,17 +973,17 @@ class ElementwiseToDtypeF32ToI64Module(torch.nn.Module):
def ElementwiseToDtypeF32ToI64Module_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 5))
# ==============================================================================
class ElementwiseToDtypeIdentityModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True)
])
@annotate_args([None, ([-1, -1], torch.float32, True)])
def forward(self, x):
return x.to(torch.float32, False, False)
@ -879,9 +992,12 @@ class ElementwiseToDtypeIdentityModule(torch.nn.Module):
def ElementwiseToDtypeIdentityModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 5))
# ==============================================================================
class ElementwiseLog2Module(torch.nn.Module):
def __init__(self):
super().__init__()
@ -898,9 +1014,12 @@ class ElementwiseLog2Module(torch.nn.Module):
def ElementwiseLog2Module_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseLog2IntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -917,9 +1036,12 @@ class ElementwiseLog2IntModule(torch.nn.Module):
def ElementwiseLog2IntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(1, 10, (3, 4), dtype=torch.int32))
# ==============================================================================
class ElementwiseRsqrtModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -928,7 +1050,6 @@ class ElementwiseRsqrtModule(torch.nn.Module):
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.rsqrt(a)
@ -937,9 +1058,12 @@ class ElementwiseRsqrtModule(torch.nn.Module):
def ElementwiseRsqrtModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseRsqrtIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -948,7 +1072,6 @@ class ElementwiseRsqrtIntModule(torch.nn.Module):
None,
([-1, -1], torch.int32, True),
])
def forward(self, a):
return torch.rsqrt(a)
@ -957,17 +1080,20 @@ class ElementwiseRsqrtIntModule(torch.nn.Module):
def ElementwiseRsqrtIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(1, 10, (3, 4), dtype=torch.int32))
# ==============================================================================
class ElementwiseAbsModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.abs(a)
@ -976,17 +1102,20 @@ class ElementwiseAbsModule(torch.nn.Module):
def ElementwiseAbsModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5, low=-1.0, high=1.0))
# ==============================================================================
class ElementwiseReciprocalModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.float32, True),
])
def forward(self, a):
return torch.reciprocal(a)
@ -995,17 +1124,20 @@ class ElementwiseReciprocalModule(torch.nn.Module):
def ElementwiseReciprocalModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4))
# ==============================================================================
class ElementwiseReciprocalIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.int32, True),
])
def forward(self, a):
return torch.reciprocal(a)
@ -1014,9 +1146,12 @@ class ElementwiseReciprocalIntModule(torch.nn.Module):
def ElementwiseReciprocalIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(1, 10, (4,), dtype=torch.int32))
# ==============================================================================
class ElementwiseDivScalarModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1033,9 +1168,12 @@ class ElementwiseDivScalarModule(torch.nn.Module):
def ElementwiseDivScalarModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseDivTensorFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1053,9 +1191,57 @@ class ElementwiseDivTensorFloatModule(torch.nn.Module):
def ElementwiseDivTensorFloatModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4), tu.rand(4).type(torch.float64))
# ==============================================================================
class ElementwiseDivRoundingModeTruncModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.float32, True),
([-1], torch.float64, True),
])
def forward(self, a, b):
return torch.div(a, b, rounding_mode="trunc")
@register_test_case(
module_factory=lambda: ElementwiseDivRoundingModeTruncModule())
def ElementwiseDivRoundingModeTruncModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4), tu.rand(4).type(torch.float64))
class ElementwiseDivRoundingModeFloorModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
([-1, -1], torch.float64, True),
])
def forward(self, a, b):
return torch.div(a, b, rounding_mode="floor")
@register_test_case(
module_factory=lambda: ElementwiseDivRoundingModeFloorModule())
def ElementwiseDivRoundingModeFloorModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4), tu.rand(3, 4).type(torch.float64))
# ==============================================================================
class ElementwiseAndIntegerModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1075,9 +1261,12 @@ def ElementwiseAndIntegerModule_basic(module, tu: TestUtils):
torch.randint(-10, 10, (3, 4)).to(torch.int32),
torch.randint(-10, 10, (3, 4)))
# ==============================================================================
class ElementwiseSubScalarIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1094,9 +1283,12 @@ class ElementwiseSubScalarIntModule(torch.nn.Module):
def ElementwiseSubScalarIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(10, (3, 4), dtype=torch.int32))
# ==============================================================================
class ElementwiseSubScalarFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1113,9 +1305,12 @@ class ElementwiseSubScalarFloatModule(torch.nn.Module):
def ElementwiseSubScalarFloatModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseAddScalarInt64Module(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1132,9 +1327,12 @@ class ElementwiseAddScalarInt64Module(torch.nn.Module):
def ElementwiseAddScalarInt64Module_basic(module, tu: TestUtils):
module.forward(torch.randint(10, (3, 4)))
# ==============================================================================
class ElementwiseAddScalarIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1151,9 +1349,12 @@ class ElementwiseAddScalarIntModule(torch.nn.Module):
def ElementwiseAddScalarIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(10, (2, 3), dtype=torch.int32))
# ==============================================================================
class ElementwiseAddScalarFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1170,9 +1371,12 @@ class ElementwiseAddScalarFloatModule(torch.nn.Module):
def ElementwiseAddScalarFloatModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseCloneModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1189,9 +1393,12 @@ class ElementwiseCloneModule(torch.nn.Module):
def ElementwiseCloneModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 3, 4))
# ==============================================================================
class ElementwiseCloneContiguousModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1208,9 +1415,12 @@ class ElementwiseCloneContiguousModule(torch.nn.Module):
def ElementwiseCloneContiguousModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 3, 4))
# ==============================================================================
class ElementwiseExpModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1219,7 +1429,6 @@ class ElementwiseExpModule(torch.nn.Module):
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.exp(a)
@ -1228,9 +1437,12 @@ class ElementwiseExpModule(torch.nn.Module):
def ElementwiseExpModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseExpIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1239,7 +1451,6 @@ class ElementwiseExpIntModule(torch.nn.Module):
None,
([-1, -1], torch.int32, True),
])
def forward(self, a):
return torch.exp(a)
@ -1251,7 +1462,9 @@ def ElementwiseExpIntModule_basic(module, tu: TestUtils):
# ==============================================================================
class ElementwiseSinModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1260,7 +1473,6 @@ class ElementwiseSinModule(torch.nn.Module):
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.sin(a)
@ -1269,9 +1481,12 @@ class ElementwiseSinModule(torch.nn.Module):
def ElementwiseSinModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseSinIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1280,7 +1495,6 @@ class ElementwiseSinIntModule(torch.nn.Module):
None,
([-1, -1], torch.int32, True),
])
def forward(self, a):
return torch.sin(a)
@ -1289,9 +1503,12 @@ class ElementwiseSinIntModule(torch.nn.Module):
def ElementwiseSinIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(1, 10, (3, 4), dtype=torch.int32))
# ==============================================================================
class ElementwiseCosModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1300,7 +1517,6 @@ class ElementwiseCosModule(torch.nn.Module):
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.cos(a)
@ -1309,9 +1525,12 @@ class ElementwiseCosModule(torch.nn.Module):
def ElementwiseCosModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseCosIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1320,7 +1539,6 @@ class ElementwiseCosIntModule(torch.nn.Module):
None,
([-1, -1], torch.int32, True),
])
def forward(self, a):
return torch.cos(a)
@ -1329,9 +1547,12 @@ class ElementwiseCosIntModule(torch.nn.Module):
def ElementwiseCosIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(1, 10, (3, 4), dtype=torch.int32))
# ==============================================================================
class ElementwiseNegModule(torch.nn.Module):
def __init__(self):
super().__init__()
@ -1340,7 +1561,6 @@ class ElementwiseNegModule(torch.nn.Module):
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.neg(a)