mirror of https://github.com/llvm/torch-mlir
[torch-mlir][sparse] inference mode for sparse GCN test (#3369)
parent
297c270980
commit
c0e7d2667d
|
@ -706,7 +706,7 @@ def test_sparse_feature_scaling():
|
|||
# CHECK: tensor({{\[}}[ 1.8340, 0.1386, 1.4181, 1.9956],
|
||||
# CHECK: [ 2.2926, 0.0797, 1.6182, 2.1580],
|
||||
# CHECK: [ 1.7397, -0.1208, 1.4059, 2.1676],
|
||||
# CHECK: [ 1.8583, 0.7178, 1.3857, 1.4673]{{\]}}, grad_fn=<{{.*}}>)
|
||||
# CHECK: [ 1.8583, 0.7178, 1.3857, 1.4673]{{\]}})
|
||||
# CHECK: torch.mlir
|
||||
# CHECK: {{\[}}[ {{1.8339[0-9]* 0.13862[0-9]* 1.4181[0-9]* 1.9955[0-9]*}} ]
|
||||
# CHECK: [ {{2.2926[0-9]* 0.07968[0-9]* 1.6181[0-9]* 2.1579[0-9]*}} ]
|
||||
|
@ -741,6 +741,8 @@ def test_sparse_gcn():
|
|||
print(m)
|
||||
|
||||
# Run it with PyTorch torch.sparse and with TORCH-MLIR sparse_jit.
|
||||
# Set to inference mode to avoid autograd component in result.
|
||||
with torch.no_grad():
|
||||
res1 = net(inp, adj_mat)
|
||||
res2 = sparse_jit(net, inp, adj_mat)
|
||||
print("torch.sparse")
|
||||
|
|
Loading…
Reference in New Issue