mirror of https://github.com/llvm/torch-mlir
[MLIR][TORCH] Add e2e support for `aten.amax` op
-- This commit adds e2e support for `atend.amax` op. Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>pull/1633/head
parent
2c643adcb9
commit
c27c1791f1
|
@ -524,6 +524,7 @@ TOSA_PASS_SET = {
|
||||||
"SquareModule_basic",
|
"SquareModule_basic",
|
||||||
"MaxPool2dStaticModule_basic",
|
"MaxPool2dStaticModule_basic",
|
||||||
"ResNet18StaticModule_basic",
|
"ResNet18StaticModule_basic",
|
||||||
|
"ReduceAmaxKeepDim_basic",
|
||||||
"NativeLayerNormModule4D_basic",
|
"NativeLayerNormModule4D_basic",
|
||||||
"LayerNormNormalizeOverAllDimsModule_basic",
|
"LayerNormNormalizeOverAllDimsModule_basic",
|
||||||
"PermuteModule_basic",
|
"PermuteModule_basic",
|
||||||
|
|
|
@ -6756,6 +6756,31 @@ def Torch_AtenMaxDimOp : Torch_Op<"aten.max.dim", [
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_AtenAmaxOp : Torch_Op<"aten.amax", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics,
|
||||||
|
ReadOnly
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::amax : (Tensor, int[], bool) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self,
|
||||||
|
AnyTorchListOfTorchIntType:$dim,
|
||||||
|
Torch_BoolType:$keepdim
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenAmaxOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 3, 1);
|
||||||
|
}
|
||||||
|
void AtenAmaxOp::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 3, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_AtenToDtypeOp : Torch_Op<"aten.to.dtype", [
|
def Torch_AtenToDtypeOp : Torch_Op<"aten.to.dtype", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
ReadOnly
|
ReadOnly
|
||||||
|
|
|
@ -167,6 +167,55 @@ static Value createSoftmaxBackwardCommonKernel(PatternRewriter &rewriter,
|
||||||
return sub;
|
return sub;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
/// We decompose aten.amax into a set of aten.max.dim op(s) depending on the
|
||||||
|
/// number of dimensions across which the max needs to be computed.
|
||||||
|
/// Eg:
|
||||||
|
/// INPUT:
|
||||||
|
/// final_output = aten.amax(initial_input, dim=(0, 2, 1), keepdim=False)
|
||||||
|
///
|
||||||
|
/// OUTPUT:
|
||||||
|
/// input_1 = aten.max.dim(initial_input, 2, keepdim) #1
|
||||||
|
/// input_2 = aten.max.dim(input_1, 1, keepdim) #2
|
||||||
|
/// final_output = aten.max.dim(input_2, 0, keepdim) #3
|
||||||
|
///
|
||||||
|
/// NOTE: We iterate over, in reverse order, every dimension included in `dim`
|
||||||
|
/// of the `aten.amax` op and create an `aten.amax.dim` op.
|
||||||
|
/// Input tensor to the next `aten.amax.dim` op is thus the output of the
|
||||||
|
/// previous `aten.amax.dim` op.
|
||||||
|
class DecomposeAtenAmaxOp : public OpRewritePattern<AtenAmaxOp> {
|
||||||
|
public:
|
||||||
|
using OpRewritePattern::OpRewritePattern;
|
||||||
|
LogicalResult matchAndRewrite(AtenAmaxOp op,
|
||||||
|
PatternRewriter &rewriter) const override {
|
||||||
|
Location loc = op.getLoc();
|
||||||
|
SmallVector<int64_t, 4> dims;
|
||||||
|
if (!matchPattern(op.dim(), m_TorchListOfConstantInts(dims)))
|
||||||
|
return rewriter.notifyMatchFailure(op,
|
||||||
|
"non-const dim parameter unsupported");
|
||||||
|
|
||||||
|
bool keepDim;
|
||||||
|
if (!matchPattern(op.keepdim(), m_TorchConstantBool(&keepDim)))
|
||||||
|
return rewriter.notifyMatchFailure(
|
||||||
|
op, "Expected a constant boolean value for keepDim");
|
||||||
|
|
||||||
|
Value input = op.self();
|
||||||
|
std::sort(dims.begin(), dims.end());
|
||||||
|
// For every dimension included in `dim` of the op, iterated over in
|
||||||
|
// reverse order, we create a call to aten.max.dim.
|
||||||
|
for (int64_t i = dims.size() - 1; i >= 0; i--) {
|
||||||
|
Value dim = rewriter.create<Torch::ConstantIntOp>(
|
||||||
|
loc, rewriter.getI64IntegerAttr(dims[i]));
|
||||||
|
// The input to the next invocation of aten.max.dim is the output of the
|
||||||
|
// previous aten.max.dim op.
|
||||||
|
input = createMaxAlongDimension(rewriter, loc, op, input, dim, keepDim);
|
||||||
|
}
|
||||||
|
rewriter.replaceOp(op, input);
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // end namespace
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
class DecomposeAtenSizeOp : public OpRewritePattern<AtenSizeOp> {
|
class DecomposeAtenSizeOp : public OpRewritePattern<AtenSizeOp> {
|
||||||
public:
|
public:
|
||||||
|
@ -3364,6 +3413,8 @@ public:
|
||||||
target.addIllegalOp<AtenSelectScatterOp>();
|
target.addIllegalOp<AtenSelectScatterOp>();
|
||||||
patterns.add<DecomposeAtenVarDimOp>(context);
|
patterns.add<DecomposeAtenVarDimOp>(context);
|
||||||
target.addIllegalOp<AtenVarDimOp>();
|
target.addIllegalOp<AtenVarDimOp>();
|
||||||
|
patterns.add<DecomposeAtenAmaxOp>(context);
|
||||||
|
target.addIllegalOp<AtenAmaxOp>();
|
||||||
patterns.add<DecomposeAtenVarCorrectionOp>(context);
|
patterns.add<DecomposeAtenVarCorrectionOp>(context);
|
||||||
target.addIllegalOp<AtenVarCorrectionOp>();
|
target.addIllegalOp<AtenVarCorrectionOp>();
|
||||||
patterns.add<DecomposeAtenStdDimOp>(context);
|
patterns.add<DecomposeAtenStdDimOp>(context);
|
||||||
|
|
|
@ -1006,9 +1006,9 @@ void TypeAnalysis::visitOperation(Operation *op,
|
||||||
getDtypeOrDefault(mean.getContext(), mean.dtype(), defaultDtype);
|
getDtypeOrDefault(mean.getContext(), mean.dtype(), defaultDtype);
|
||||||
visitReductionAlongAllDimsOp(mean, dtype, operands);
|
visitReductionAlongAllDimsOp(mean, dtype, operands);
|
||||||
return;
|
return;
|
||||||
} else if (auto max = dyn_cast<AtenMaxOp>(op)) {
|
} else if (isa<AtenMaxOp, AtenAmaxOp>(op)) {
|
||||||
Type dtype = operands[0]->getValue().dtype;
|
Type dtype = operands[0]->getValue().dtype;
|
||||||
visitReductionAlongAllDimsOp(max, dtype, operands);
|
visitReductionAlongAllDimsOp(op, dtype, operands);
|
||||||
return;
|
return;
|
||||||
} else if (isa<AtenStdOp, AtenStdDimOp, AtenVarOp, AtenVarDimOp,
|
} else if (isa<AtenStdOp, AtenStdDimOp, AtenVarOp, AtenVarDimOp,
|
||||||
AtenVarCorrectionOp>(op)) {
|
AtenVarCorrectionOp>(op)) {
|
||||||
|
|
|
@ -5842,6 +5842,13 @@ StringRef mlir::torch::Torch::getShapeLibrary() {
|
||||||
" %1 = torch.prim.TupleConstruct %0, %0 : !torch.list<int>, !torch.list<int> -> !torch.tuple<list<int>, list<int>>\n"
|
" %1 = torch.prim.TupleConstruct %0, %0 : !torch.list<int>, !torch.list<int> -> !torch.tuple<list<int>, list<int>>\n"
|
||||||
" return %1 : !torch.tuple<list<int>, list<int>>\n"
|
" return %1 : !torch.tuple<list<int>, list<int>>\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_shape_fn.aten.amax\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.bool) -> !torch.list<int> {\n"
|
||||||
|
" %none = torch.constant.none\n"
|
||||||
|
" %0 = torch.derefine %arg1 : !torch.list<int> to !torch.optional<list<int>>\n"
|
||||||
|
" %1 = torch.derefine %none : !torch.none to !torch.any\n"
|
||||||
|
" %2 = call @__torch__.torch.jit._shape_functions.sum_mean_dim(%arg0, %0, %arg2, %1) : (!torch.list<int>, !torch.optional<list<int>>, !torch.bool, !torch.any) -> !torch.list<int>\n"
|
||||||
|
" return %2 : !torch.list<int>\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_shape_fn.aten.mean.dim\"(%arg0: !torch.list<int>, %arg1: !torch.optional<list<int>>, %arg2: !torch.bool, %arg3: !torch.optional<int>) -> !torch.list<int> {\n"
|
" func.func @\"__torch_mlir_shape_fn.aten.mean.dim\"(%arg0: !torch.list<int>, %arg1: !torch.optional<list<int>>, %arg2: !torch.bool, %arg3: !torch.optional<int>) -> !torch.list<int> {\n"
|
||||||
" %0 = torch.derefine %arg3 : !torch.optional<int> to !torch.any\n"
|
" %0 = torch.derefine %arg3 : !torch.optional<int> to !torch.any\n"
|
||||||
" %1 = call @__torch__.torch.jit._shape_functions.sum_mean_dim(%arg0, %arg1, %arg2, %0) : (!torch.list<int>, !torch.optional<list<int>>, !torch.bool, !torch.any) -> !torch.list<int>\n"
|
" %1 = call @__torch__.torch.jit._shape_functions.sum_mean_dim(%arg0, %arg1, %arg2, %0) : (!torch.list<int>, !torch.optional<list<int>>, !torch.bool, !torch.any) -> !torch.list<int>\n"
|
||||||
|
|
|
@ -589,6 +589,9 @@ def aten〇max〇dim(self: List[int], dim: int, keepdim: bool = False) -> Tuple[
|
||||||
reduced_shape = _reduce_along_dim(self, dim, keepdim)
|
reduced_shape = _reduce_along_dim(self, dim, keepdim)
|
||||||
return reduced_shape, reduced_shape
|
return reduced_shape, reduced_shape
|
||||||
|
|
||||||
|
def aten〇amax(self: List[int], dim: List[int] = (), keepdim: bool = False) -> List[int]:
|
||||||
|
return upstream_shape_functions.sum_mean_dim(self, dim, keepdim, None)
|
||||||
|
|
||||||
def aten〇mean〇dim(self: List[int], dim: Optional[List[int]], keepdim: bool = False, dtype: Optional[int] = None) -> List[int]:
|
def aten〇mean〇dim(self: List[int], dim: Optional[List[int]], keepdim: bool = False, dtype: Optional[int] = None) -> List[int]:
|
||||||
return upstream_shape_functions.sum_mean_dim(self, dim, keepdim, dtype)
|
return upstream_shape_functions.sum_mean_dim(self, dim, keepdim, dtype)
|
||||||
|
|
||||||
|
|
|
@ -478,6 +478,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
||||||
emit("aten::sum.dim_IntList : (Tensor, int[]?, bool, int?) -> (Tensor)")
|
emit("aten::sum.dim_IntList : (Tensor, int[]?, bool, int?) -> (Tensor)")
|
||||||
emit("aten::max : (Tensor) -> (Tensor)")
|
emit("aten::max : (Tensor) -> (Tensor)")
|
||||||
emit("aten::max.dim : (Tensor, int, bool) -> (Tensor, Tensor)")
|
emit("aten::max.dim : (Tensor, int, bool) -> (Tensor, Tensor)")
|
||||||
|
emit("aten::amax : (Tensor, int[], bool) -> (Tensor)")
|
||||||
emit("aten::to.dtype : (Tensor, int, bool, bool, int?) -> (Tensor)", has_folder=True)
|
emit("aten::to.dtype : (Tensor, int, bool, bool, int?) -> (Tensor)", has_folder=True)
|
||||||
emit("aten::to.dtype_layout : (Tensor, int?, int?, Device?, bool?, bool, bool, int?) -> (Tensor)", has_folder=True)
|
emit("aten::to.dtype_layout : (Tensor, int?, int?, Device?, bool?, bool, bool, int?) -> (Tensor)", has_folder=True)
|
||||||
emit("aten::to.other : (Tensor, Tensor, bool, bool, int?) -> (Tensor)")
|
emit("aten::to.other : (Tensor, Tensor, bool, bool, int?) -> (Tensor)")
|
||||||
|
|
|
@ -462,6 +462,78 @@ def ReduceMaxUnsignedIntModule_basic(module, tu: TestUtils):
|
||||||
|
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
|
|
||||||
|
class ReduceAmaxSingleDim(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1, -1], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, a):
|
||||||
|
return torch.ops.aten.amax(a, 1)
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ReduceAmaxSingleDim())
|
||||||
|
def ReduceAmaxSingleDim_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 4, 5, high=100))
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
class ReduceAmaxMultiDim(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1, -1], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, a):
|
||||||
|
return torch.ops.aten.amax(a, (0, 2))
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ReduceAmaxMultiDim())
|
||||||
|
def ReduceAmaxMultiDim_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 4, 5, high=100))
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
class ReduceAmaxOutOfOrderDim(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1, -1, -1], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, a):
|
||||||
|
return torch.ops.aten.amax(a, (2, 1, 3))
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ReduceAmaxOutOfOrderDim())
|
||||||
|
def ReduceAmaxOutOfOrderDim_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 4, 5, 6, high=100))
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
class ReduceAmaxKeepDim(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1, -1], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, a):
|
||||||
|
return torch.ops.aten.amax(a, (0, 2), keepdim=True)
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ReduceAmaxKeepDim())
|
||||||
|
def ReduceAmaxKeepDim_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 4, 5, high=100))
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
class ReduceL1NormModule(torch.nn.Module):
|
class ReduceL1NormModule(torch.nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
Loading…
Reference in New Issue