Rework the poc tracer to be structured how intended.

pull/1/head
Stella Laurenzo 2020-05-02 19:52:21 -07:00
parent 0805013716
commit c89a35f97f
7 changed files with 269 additions and 299 deletions

View File

@ -69,4 +69,21 @@ def Numpy_UfuncCallOp : Numpy_Op<"ufunc_call", []> {
}];
}
def Numpy_Narrow : Numpy_Op<"narrow", []> {
let summary = "Narrows an array to a known type at boundaries.";
let description = [{
During tracing, specific data types are often unknown. This op generically
narrows from an unknown to a known data type at boundaries.
}];
let arguments = (ins
Numpy_AnyArray:$operand
);
let results = (outs
Numpy_AnyArray:$result
);
let assemblyFormat = [{
$operand attr-dict `:` functional-type($operand, $result)
}];
}
#endif // NPCOMP_DIALECT_NUMPY_NUMPY_OPS

View File

@ -43,18 +43,22 @@ class Ops(ir.Ops):
})
return self.op("numpy.ufunc_call", [result_type], args, attrs)
def numpy_narrow(self, result_type, operand):
"""Creates a numpy.narrow op."""
return self.op("numpy.narrow", [result_type], [operand])
class Types(ir.Types):
"""Container/factory for dialect types.
>>> t = Types(ir.MLIRContext())
>>> t.any_dtype
>>> t.numpy_any_dtype
!numpy.any_dtype
>>> t.tensor(t.any_dtype, [1, 2, 3])
>>> t.tensor(t.numpy_any_dtype, [1, 2, 3])
tensor<1x2x3x!numpy.any_dtype>
>>> t.tensor(t.any_dtype)
>>> t.tensor(t.numpy_any_dtype)
tensor<*x!numpy.any_dtype>
>>> t.tensor(t.any_dtype, [-1, 2])
>>> t.tensor(t.numpy_any_dtype, [-1, 2])
tensor<?x2x!numpy.any_dtype>
>>> t.tensor(t.f32)
tensor<*xf32>
@ -64,7 +68,7 @@ class Types(ir.Types):
"""
def __init__(self, context):
super().__init__(context)
self.any_dtype = context.parse_type("!numpy.any_dtype")
self.numpy_any_dtype = context.parse_type("!numpy.any_dtype")
def load_builtin_module(context=None):
@ -91,19 +95,25 @@ def load_builtin_module(context=None):
_BUILTIN_MODULE_ASM = r"""
numpy.generic_ufunc @numpy.add (
// CHECK-SAME: overload(%arg0: i32, %arg1: i32) -> i32 {
overload(%arg0: i32, %arg1: i32) -> i32 {
// CHECK: addi
%0 = addi %arg0, %arg1 : i32
numpy.ufunc_return %0 : i32
},
// CHECK: overload(%arg0: f32, %arg1: f32) -> f32 {
overload(%arg0: f32, %arg1: f32) -> f32 {
// CHECK: addf
%0 = addf %arg0, %arg1 : f32
numpy.ufunc_return %0 : f32
}
)
numpy.generic_ufunc @numpy.multiple (
overload(%arg0: i32, %arg1: i32) -> i32 {
%0 = muli %arg0, %arg1 : i32
numpy.ufunc_return %0 : i32
},
overload(%arg0: f32, %arg1: f32) -> f32 {
%0 = mulf %arg0, %arg1 : f32
numpy.ufunc_return %0 : f32
}
)
"""
if __name__ == "__main__":

View File

@ -1,199 +0,0 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import re
import numpy as np
from ..native.mlir import edsc
from ..exporter import *
from ..types import *
class TracingError(Exception):
pass
class EmitterRegistry:
def __init__(self):
self._func_emitters = {}
def register(self, func, emitter):
self._func_emitters[func] = emitter
def lookup(self, func):
return self._func_emitters.get(func)
def register_ufunc(self, ufunc, function_name):
def emitter(pft, method, *inputs, **kwargs):
if method == "__call__":
if kwargs:
raise TracingError("Generic ufunc with kwargs not supported %r" % (
ufunc,))
# Map inputs to TracedArrays.
# TODO: Process captures, promotions, etc.
op_inputs = []
for py_input in inputs:
if not isinstance(py_input, TracedArray):
raise TracingError("Unsupported ufunc input: %r", (py_input,))
op_input = pft.get_traced_array_value(py_input)
if op_input is None:
raise TracingError("Unregistered traced array: %r", (py_input,))
op_inputs.append(op_input)
# Emit op.
mlir_m = pft.mlir_module
op_result_types = [mlir_m.make_type("tensor<*x!numpy.any_dtype>")]
op_result = edsc.op("numpy.tmp_generic_ufunc", op_inputs, op_result_types,
ufunc_name=mlir_m.stringAttr(function_name))
# Wrap returns.
return_array = TracedArray(pft)
pft.set_traced_array(return_array, op_result)
return return_array
raise TracingError("Unsupported ufunc method %r:%r" % (ufunc, method,))
self.register(ufunc, emitter)
EMITTER_REGISTRY = EmitterRegistry()
EMITTER_REGISTRY.register_ufunc(np.multiply, "numpy.multiply")
EMITTER_REGISTRY.register_ufunc(np.add, "numpy.add")
class TracedArray(np.lib.mixins.NDArrayOperatorsMixin):
"""An array that traces its operations."""
def __init__(self, pft: "PyFuncTrace"):
self._pft = pft
def __hash__(self):
return id(self)
def __repr__(self):
return "<TracedArray %d>" % id(self)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
emitter = EMITTER_REGISTRY.lookup(ufunc)
if emitter is None:
return NotImplemented
result = emitter(self._pft, method, *inputs, **kwargs)
return result
class PyFuncTrace:
r"""Creates an MLIR function from an unwrapped python function.
# TODO: These constraints are too verbose and should be coming in by
# example.
>>> def simple_mul(a: np.ndarray, b: np.ndarray) -> np.ndarray:
... return a * b + a
>>> exp = Exporter()
>>> exp.simple_mul = simple_mul
>>> exp.simple_mul.sig.args["a"] += Shape(1, 4)
>>> exp.simple_mul.sig.args["a"] += DynamicDim(0)
>>> exp.simple_mul.sig.args["a"] += DType(np.float32)
>>> exp.simple_mul.sig.args["b"] += Shape(1)
>>> exp.simple_mul.sig.args["b"] += DType(np.float32)
>>> exp.simple_mul.sig.result += Shape(1, 4)
>>> exp.simple_mul.sig.result += DynamicDim(0)
>>> exp.simple_mul.sig.result += DType(np.float32)
>>> pft = PyFuncTrace(exp.simple_mul)
>>> pft.trace()
>>> print(pft.mlir_module.get_ir().strip())
module {
func @simple_mul(%arg0: tensor<?x4xf32>, %arg1: tensor<1xf32>) -> tensor<?x4xf32> {
%0 = "numpy.tmp_generic_ufunc"(%arg0, %arg1) {ufunc_name = "numpy.multiply"} : (tensor<?x4xf32>, tensor<1xf32>) -> tensor<*x!numpy.any_dtype>
%1 = "numpy.tmp_generic_ufunc"(%0, %arg0) {ufunc_name = "numpy.add"} : (tensor<*x!numpy.any_dtype>, tensor<?x4xf32>) -> tensor<*x!numpy.any_dtype>
%2 = "numpy.narrow"(%1) : (tensor<*x!numpy.any_dtype>) -> tensor<?x4xf32>
return %2 : tensor<?x4xf32>
}
}
"""
__slots__ = [
"epf",
"mlir_ctx",
"mlir_fun",
"mlir_module",
"mlir_result_types",
"_args_array_params",
"_traced_arrays",
"_python_args",
"_result_array_params",
]
def __init__(self, epf: ExportPyFunction):
self.mlir_module = edsc.MLIRModule()
self.epf = epf
self._traced_arrays = {} # Mapping of TracedArray to current consumer value
self._validate()
# Extract ArrayParams for all args and results.
self._args_array_params = [
ArrayParams.from_constraints(arg.constraints)
for arg in self.epf.sig.args]
self._python_args = [None] * len(self._args_array_params)
self._result_array_params = ArrayParams.from_constraints(
self.epf.sig.result.constraints)
# Create the MLIR function.
self.mlir_fun, self.mlir_result_types = self._create_mlir_function()
self.mlir_ctx = self.mlir_module.function_context(self.mlir_fun)
self._create_trace_roots()
def set_traced_array(self, traced_array, value_handle):
"""Sets the current SSA value for a traced_array."""
assert isinstance(traced_array, TracedArray)
self._traced_arrays[traced_array] = value_handle
def get_traced_array_value(self, traced_array):
return self._traced_arrays.get(traced_array)
def trace(self):
# TODO: General argument merging
with self.mlir_ctx:
py_results = (self.epf.pyfunc(*self._python_args),)
if len(py_results) != len(self.mlir_result_types):
raise TracingError(
"Traced function returned != %d results: %r" % (
len(self.mlir_result_types), py_results,))
# Narrow all results to the declared return types.
return_operands = []
for py_result, mlir_result_type in zip(py_results, self.mlir_result_types):
mlir_result = self.get_traced_array_value(py_result)
if mlir_result is None:
raise TracingError("Unregistered traced array: %r", (py_input,))
# narrow to declared result type.
return_operands.append(edsc.op(
"numpy.narrow", [mlir_result], [mlir_result_type]))
edsc.ret(return_operands)
def _validate(self):
if not all(arg.type_class == TypeClass.NdArray
for arg in self.epf.sig.args):
raise NotImplementedError("Non NdArray args: %r" % (self.epf.sig.args,))
if not self.epf.sig.result.type_class == TypeClass.NdArray:
raise NotImplementedError("Non NdArray result: %r" % (
self.epf.sig.result,))
def _create_mlir_function(self):
mlir_m = self.mlir_module
epf = self.epf
f_args = [mlir_m.make_type(ap.mlir_tensor_type_asm)
for ap in self._args_array_params]
f_results = [mlir_m.make_type(
self._result_array_params.mlir_tensor_type_asm)]
return mlir_m.make_function(epf.__name__, f_args, f_results), f_results
def _create_trace_roots(self):
for index, ap in enumerate(self._args_array_params):
if ap is not None:
ta = TracedArray(self)
self.set_traced_array(ta, self.mlir_fun.arg(index))
self._python_args[index] = ta
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -10,6 +10,10 @@ import threading
import numpy as np
class TracingError(Exception):
pass
class TraceContext:
"""Context for intercepting array traces.
@ -42,10 +46,19 @@ class TraceContext:
"""
_local = threading.local()
__slots__ = [
"_desc",
"_next_id",
"active",
]
def __init__(self, desc=None):
self._desc = desc
self._next_id = 1
self.active = False
def _handle_ufunc(self, ufunc, method, inputs, kwargs):
"""Handles a ufunc invocation involving at least one TracedArray."""
raise NotImplementedError()
def get_next_id(self):
"""Gets the next unique id for the context."""
@ -78,16 +91,28 @@ class TraceContext:
def __enter__(self):
s = self._get_context_stack()
if s:
s[-1].active = False
s.append(self)
self.active = True
return self
def __exit__(self, exc_type, exc_value, traceback):
s = self._get_context_stack()
s.pop()
self.active = False
if s:
s[-1].active = True
def __repr__(self):
return "<TraceContext %r>" % self._desc
def _assert_active(tc: TraceContext):
assert tc.active, (
"Attempt to trace an action on an inactive trace context: %r" % tc)
class TracedArray(np.lib.mixins.NDArrayOperatorsMixin):
"""An array that traces its operations.
@ -103,6 +128,9 @@ class TracedArray(np.lib.mixins.NDArrayOperatorsMixin):
self._tc = tc if tc is not None else TraceContext.current()
self._uid = self._tc.get_next_id()
def __hash__(self):
return id(self)
@property
def uid(self):
return self._uid
@ -111,7 +139,9 @@ class TracedArray(np.lib.mixins.NDArrayOperatorsMixin):
return "<TracedArray %d>" % self._uid
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
return NotImplemented
tc = self._tc
_assert_active(tc)
return tc._handle_ufunc(ufunc, method, inputs, kwargs)
if __name__ == "__main__":

View File

@ -6,110 +6,184 @@ import re
import numpy as np
from . import context
from ..native.mlir import edsc
from ..dialect import Numpy
from ..native.mlir import ir
from .context import *
from ..exporter import *
from ..types import *
def _map_typing_to_mlir_type(mlir_m, typing_annot):
"""Maps a typing annotation to an MLIR type.
class ModuleBuilder:
"""Builds an MLIR module by tracing functions."""
def __init__(self, mlir_context=None):
self.context = context if mlir_context else ir.MLIRContext()
# TODO: Instead of bootstrapping a large module, populate imports
# dynamically.
self.module = Numpy.load_builtin_module(self.context)
self.ops = Numpy.Ops(self.context)
self.types = Numpy.Types(self.context)
Args:
mlir_m: MLIRModule.
typing_annot: Value for an __annotations__ entry.
Returns:
MLIR type or None if not mappable.
"""
if typing_annot is np.ndarray:
return mlir_m.make_type("tensor<*x!numpy.any_dtype>")
return None
def trace(self, export_py_func: ExportPyFunction):
"""Traces and exported python function."""
assert isinstance(export_py_func, ExportPyFunction), (
"Expected an exported python function (from the Exporter class)")
tracer = FunctionTracer(self, export_py_func)
with tracer:
tracer.trace()
class GenericFunctionTrace:
"""Represents a trace of a 'generic' python function in progress."""
class FunctionTracer(TraceContext):
"""A trace of a single function."""
__slots__ = [
"module_builder",
"epf",
"_args_array_params",
"_f",
"_f_types",
"_mlir_m",
"_mlir_c",
"_python_args",
"_ops",
"_result_array_params",
"_traced_arrays",
"_types",
]
def __init__(self, module_builder: ModuleBuilder, epf: ExportPyFunction):
super().__init__(desc="[trace of %s]" % epf.__name__)
self.module_builder = module_builder
self.epf = epf
self._traced_arrays = {} # Mapping of TracedArray to current consumer value
self._validate()
def __init__(self, mlir_m, mlir_f):
self._mlir_m = mlir_m
self._mlir_f = mlir_f
# Alias some parent members for convenience.
self._mlir_m = module_builder.module
self._mlir_c = module_builder.context
self._ops = module_builder.ops
self._types = module_builder.types
@property
def mlir_module(self):
return self._mlir_m
# Extract ArrayParams for all args and results.
self._args_array_params = [
ArrayParams.from_constraints(arg.constraints)
for arg in self.epf.sig.args]
self._python_args = [None] * len(self._args_array_params)
self._result_array_params = ArrayParams.from_constraints(
self.epf.sig.result.constraints)
@property
def mlir_function(self):
return self._mlir_f
# Create the MLIR function.
self._f, self._f_types = self._create_mlir_function()
self._create_trace_roots()
@classmethod
def from_typed_pyfunc(cls, mlir_m, pyfunc, name_in_module=None):
"""Creates a generic function trace from a pyfunc with type annotations.
def trace(self):
# Invoke the python function with placeholders.
# TODO: More sophisticated signature merging
# TODO: Multiple results
# TODO: Error reporting
ops = self._ops
py_results = (self.epf.pyfunc(*self._python_args),)
if len(py_results) != len(self._f_types):
raise TracingError(
"Traced function returned != %d results: %r" % (
len(self._f_types), py_results,))
This is a relatively limited mechanism which relies on typing annotations
for arguments and results and supports a relatively limited amount of
variation.
# Narrow all results to the declared return types.
return_operands = []
for py_result, mlir_result_type in zip(py_results, self._f_types):
mlir_result = self.get_traced_array_value(py_result)
if mlir_result is None:
raise TracingError("Unregistered traced array: %r", (py_result,))
# narrow to declared result type.
return_operands.extend(
ops.numpy_narrow(mlir_result_type, mlir_result).results)
ops.return_op(return_operands)
Examples:
def set_traced_array(self, traced_array, value):
"""Sets the current SSA value for a traced_array."""
assert isinstance(traced_array, TracedArray)
self._traced_arrays[traced_array] = value
* Generic ndarrays:
>>> m = edsc.MLIRModule()
>>> def simple_mul(a: np.ndarray, b: np.ndarray) -> np.ndarray:
... return a * b
>>> gft = GenericFunctionTrace.from_typed_pyfunc(m, simple_mul)
>>> ir = gft.mlir_module.get_ir()
>>> print(re.findall("func @simple_mul.+", ir)[0])
func @simple_mul$$generic(%arg0: tensor<*x!numpy.any_dtype> {py_name = "a"}, %arg1: tensor<*x!numpy.any_dtype> {py_name = "b"}) -> tensor<*x!numpy.any_dtype> attributes {py_ftype = "generic_trace", py_name = "simple_mul"} {
def get_traced_array_value(self, traced_array):
return self._traced_arrays.get(traced_array)
* None types must be annotated:
>>> m = edsc.MLIRModule()
>>> def simple_mul(a: np.ndarray, b: np.ndarray) -> None:
... return a * b
>>> gft = GenericFunctionTrace.from_typed_pyfunc(m, simple_mul)
>>> ir = gft.mlir_module.get_ir()
>>> print(re.findall("func @simple_mul.+", ir)[0])
func @simple_mul$$generic(%arg0: tensor<*x!numpy.any_dtype> {py_name = "a"}, %arg1: tensor<*x!numpy.any_dtype> {py_name = "b"}) attributes {py_ftype = "generic_trace", py_name = "simple_mul"} {
def _validate(self):
if not all(arg.type_class == TypeClass.NdArray
for arg in self.epf.sig.args):
raise NotImplementedError("Non NdArray args: %r" % (self.epf.sig.args,))
if not self.epf.sig.result.type_class == TypeClass.NdArray:
raise NotImplementedError("Non NdArray result: %r" % (
self.epf.sig.result,))
Args:
mlir_m: An MLIRModule.
pyfunc: A python function to transform.
Returns:
A new GenericFunctionTrace.
"""
if name_in_module is None:
name_in_module = pyfunc.__name__ + "$$generic"
code = pyfunc.__code__
# Process arguments.
f_args = []
for i in range(code.co_argcount):
arg_name = code.co_varnames[i]
arg_annot = pyfunc.__annotations__.get(arg_name)
if arg_annot is None:
raise ValueError("Function %s arg %d is missing a typing annotation" % (
pyfunc.__name__, i))
arg_type = _map_typing_to_mlir_type(mlir_m, arg_annot)
if arg_type is None:
raise ValueError("Function %s arg %d is not a supported type" % (
pyfunc.__name__, i))
arg_type = arg_type({
"py_name": mlir_m.stringAttr(arg_name),
})
f_args.append(arg_type)
def _create_mlir_function(self):
mlir_c = self._mlir_c
mlir_m = self._mlir_m
ops = self._ops
types = self._types
epf = self.epf
f_args = [mlir_c.parse_type(ap.mlir_tensor_type_asm)
for ap in self._args_array_params]
f_types = [mlir_c.parse_type(
self._result_array_params.mlir_tensor_type_asm)]
ops.builder.insert_before_terminator(mlir_m.first_block)
f_type = types.function(f_args, f_types)
f = ops.func_op(epf.__name__, f_type, create_entry_block=True)
return f, f_types
# Process results.
f_results = []
if "return" not in pyfunc.__annotations__:
raise ValueError("Un-annotated function returns not yet supported")
return_annot = pyfunc.__annotations__["return"]
if return_annot is not None:
return_type = _map_typing_to_mlir_type(mlir_m, return_annot)
if return_type is None:
raise ValueError("Function %s return type %r is not supported" % (
pyfunc.__name__, return_annot))
f_results.append(return_type)
def _create_trace_roots(self):
entry_block = self._f.first_block
for index, ap in enumerate(self._args_array_params):
if ap is not None:
ta = TracedArray(self)
self.set_traced_array(ta, entry_block.args[index])
self._python_args[index] = ta
mlir_f = mlir_m.make_function(
name_in_module, f_args, f_results,
py_ftype=mlir_m.stringAttr("generic_trace"),
py_name=mlir_m.stringAttr(pyfunc.__name__))
return GenericFunctionTrace(mlir_m, mlir_f)
def _handle_ufunc(self, ufunc, method, inputs, kwargs):
if method == "__call__":
if kwargs:
raise TracingError("Generic ufunc with kwargs not supported %r" % (
ufunc,))
# Map inputs to TracedArrays.
# TODO: Process captures, promotions, etc.
op_inputs = []
for py_input in inputs:
if not isinstance(py_input, TracedArray):
raise TracingError("Unsupported ufunc input: %r", (py_input,))
op_input = self.get_traced_array_value(py_input)
if op_input is None:
raise TracingError("Unregistered traced array: %r", (py_input,))
op_inputs.append(op_input)
# Emit op.
types = self._types
mlir_m = self._mlir_m
callee_symbol = _UFUNC_SYMBOL_MAP.get(ufunc)
if not callee_symbol:
raise TracingError("Unsupported ufunc: %r" % ufunc)
op_result_type = types.tensor(types.numpy_any_dtype)
call_op = self._ops.numpy_ufunc_call_op(
callee_symbol, op_result_type, *op_inputs)
op_result = call_op.results[0]
# Wrap returns.
return_array = TracedArray(self)
self.set_traced_array(return_array, op_result)
return return_array
# Unsupported method.
raise TracingError("Unsupported ufunc method %r:%r" % (ufunc, method,))
# TODO: There should be an open registry of ufuncs. But for now, just map
# introspect the numpy package and record them.
def _build_ufunc_symbol_map():
d = {}
for member in dir(np):
ufunc = getattr(np, member)
if isinstance(ufunc, np.ufunc):
d[ufunc] = "numpy." + member
return d
_UFUNC_SYMBOL_MAP = _build_ufunc_symbol_map()
if __name__ == "__main__":

View File

@ -0,0 +1,38 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
from ..types import *
from ..exporter import *
from .mlir_trace import *
from ..utils import test_utils
test_utils.start_filecheck_test()
def simple_mul(a: np.ndarray, b: np.ndarray) -> np.ndarray:
return a * b + a + b
# TODO: Implement subclassing and deriving constraints by run
exp = Exporter()
exp.simple_mul = simple_mul
exp.simple_mul.sig.args["a"] += Shape(1, 4)
exp.simple_mul.sig.args["a"] += DynamicDim(0)
exp.simple_mul.sig.args["a"] += DType(np.float32)
exp.simple_mul.sig.args["b"] += Shape(1)
exp.simple_mul.sig.args["b"] += DType(np.float32)
exp.simple_mul.sig.result += Shape(1, 4)
exp.simple_mul.sig.result += DynamicDim(0)
exp.simple_mul.sig.result += DType(np.float32)
mb = ModuleBuilder()
mb.trace(exp.simple_mul)
# CHECK: func @simple_mul(%arg0: tensor<?x4xf32>, %arg1: tensor<1xf32>) -> tensor<?x4xf32> {
# CHECK: %0 = numpy.ufunc_call @numpy.multiply(%arg0, %arg1) : (tensor<?x4xf32>, tensor<1xf32>) -> tensor<*x!numpy.any_dtype>
# CHECK: %1 = numpy.ufunc_call @numpy.add(%0, %arg0) : (tensor<*x!numpy.any_dtype>, tensor<?x4xf32>) -> tensor<*x!numpy.any_dtype>
# CHECK: %2 = numpy.ufunc_call @numpy.add(%1, %arg1) : (tensor<*x!numpy.any_dtype>, tensor<1xf32>) -> tensor<*x!numpy.any_dtype>
# CHECK: %3 = numpy.narrow %2 : (tensor<*x!numpy.any_dtype>) -> tensor<?x4xf32>
# CHECK: return %3 : tensor<?x4xf32>
# CHECK: }
print(mb.module.to_asm())
test_utils.end_filecheck_test(__file__)

View File

@ -13,7 +13,7 @@ TEST_MODULES = (
"npcomp.tracing.mlir_trace",
"npcomp.types",
"npcomp.exporter",
"npcomp.exp.extractor",
"npcomp.tracing.mlir_trace_test",
)
# Compute PYTHONPATH for sub processes.