[MLIR][TORCH] Add E2E support for aten.mse_loss op

This commit adds decomposition for the `aten.mse_loss` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
rewrite-getitem
Vivek Khandelwal 2022-10-20 16:32:09 +05:30
parent 2f097d3976
commit ca87033d2f
9 changed files with 214 additions and 2 deletions

View File

@ -479,7 +479,8 @@ TOSA_PASS_SET = {
"ToDtypeBoolLayoutNoneStaticModule_basic", "ToDtypeBoolLayoutNoneStaticModule_basic",
"ToCopyBoolDTypeStaticModule_basic", "ToCopyBoolDTypeStaticModule_basic",
"HardTanhIntModule_basic", "HardTanhIntModule_basic",
"AtenRoundIntModule_basic" "AtenRoundIntModule_basic",
"MseLossNoReductionModule_basic",
} }
LTC_XFAIL_SET = { LTC_XFAIL_SET = {

View File

@ -4693,6 +4693,31 @@ def Torch_AtenFrobeniusNormDimOp : Torch_Op<"aten.frobenius_norm.dim", [
}]; }];
} }
def Torch_AtenMseLossOp : Torch_Op<"aten.mse_loss", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::mse_loss : (Tensor, Tensor, int) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchTensorType:$target,
Torch_IntType:$reduction
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenMseLossOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 3, 1);
}
void AtenMseLossOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 3, 1);
}
}];
}
def Torch_AtenConstantPadNdOp : Torch_Op<"aten.constant_pad_nd", [ def Torch_AtenConstantPadNdOp : Torch_Op<"aten.constant_pad_nd", [
AllowsTypeRefinement, AllowsTypeRefinement,
HasValueSemantics, HasValueSemantics,

View File

@ -2845,6 +2845,57 @@ public:
}; };
} // namespace } // namespace
namespace {
class DecomposeAtenMseLossOp : public OpRewritePattern<AtenMseLossOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenMseLossOp op,
PatternRewriter &rewriter) const override {
// The `reduction` arg would have only three valid values.
// 0 means no reduction.
// 1 means mean reduction.
// 2 means sum reduction.
int64_t reductionType;
if (!matchPattern(op.reduction(), m_TorchConstantInt(&reductionType)))
return rewriter.notifyMatchFailure(
op, "Expected a constant integer value for reduction");
Location loc = op.getLoc();
BaseTensorType resultType = op.getType().cast<BaseTensorType>();
BaseTensorType inputType = op.self().getType().cast<BaseTensorType>();
if (!inputType.hasSizes())
return rewriter.notifyMatchFailure(
op, "Expected the input tensor to have sizes");
BaseTensorType subType =
inputType
.getWithSizesAndDtype(llvm::makeArrayRef(inputType.getSizes()),
resultType.getDtype())
.cast<BaseTensorType>();
Value sub = createTensorSub(rewriter, loc, subType, op.self(), op.target());
Value result = rewriter.create<AtenSquareOp>(loc, subType, sub);
if (reductionType == torch_upstream::Reduction::None) {
rewriter.replaceOp(op, result);
return success();
}
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(loc);
if (reductionType == torch_upstream::Reduction::Mean)
result = rewriter.create<AtenMeanDimOp>(loc, resultType, result,
/*dim=*/cstNone,
/*keepdim=*/cstFalse,
/*dtype=*/cstNone);
else
result = rewriter.create<AtenSumDimIntListOp>(
loc, resultType, result, /*dim=*/cstNone, /*keepdim=*/cstFalse,
/*dtype=*/cstNone);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace { namespace {
class DecomposeComplexOpsPass class DecomposeComplexOpsPass
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> { : public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
@ -3040,6 +3091,8 @@ public:
target.addIllegalOp<AtenLiftFreshCopyOp>(); target.addIllegalOp<AtenLiftFreshCopyOp>();
patterns.add<DecomposeAtenIndexTensorHackedTwinOp>(context); patterns.add<DecomposeAtenIndexTensorHackedTwinOp>(context);
target.addIllegalOp<AtenIndexTensorHackedTwinOp>(); target.addIllegalOp<AtenIndexTensorHackedTwinOp>();
patterns.add<DecomposeAtenMseLossOp>(context);
target.addIllegalOp<AtenMseLossOp>();
for (std::string opName : legalOps) { for (std::string opName : legalOps) {
target.addLegalOp(OperationName(opName, context)); target.addLegalOp(OperationName(opName, context));

View File

@ -756,7 +756,8 @@ void TypeAnalysis::visitOperation(Operation *op,
// Promote the two dtypes assuming non-zero rank. // Promote the two dtypes assuming non-zero rank.
if (isa<AtenMmOp, AtenBmmOp, AtenMatmulOp, AtenConv2dOp, AtenConvolutionOp, if (isa<AtenMmOp, AtenBmmOp, AtenMatmulOp, AtenConv2dOp, AtenConvolutionOp,
Aten_ConvolutionOp, Aten_ConvolutionDeprecatedOp, AtenMvOp, Aten_ConvolutionOp, Aten_ConvolutionDeprecatedOp, AtenMvOp,
AtenConvolutionOverrideableOp, AtenConvTranspose2dInputOp>(op)) { AtenConvolutionOverrideableOp, AtenConvTranspose2dInputOp,
AtenMseLossOp>(op)) {
auto knowledge = auto knowledge =
ValueKnowledge::getTensorPessimisticValueState(op->getContext()); ValueKnowledge::getTensorPessimisticValueState(op->getContext());
knowledge.dtype = getPromotedResultTypeAssumingNonZeroRank( knowledge.dtype = getPromotedResultTypeAssumingNonZeroRank(

View File

@ -6743,6 +6743,18 @@ StringRef mlir::torch::Torch::getShapeLibrary() {
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg1) : (!torch.list<int>) -> !torch.list<int>\n" " %0 = call @__torch__.torch.jit._shape_functions.unary(%arg1) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n" " return %0 : !torch.list<int>\n"
" }\n" " }\n"
" func.func @\"__torch_mlir_shape_fn.aten.mse_loss\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.int) -> !torch.list<int> {\n"
" %int0 = torch.constant.int 0\n"
" %0 = torch.aten.eq.int %arg2, %int0 : !torch.int, !torch.int -> !torch.bool\n"
" %1 = torch.prim.If %0 -> (!torch.list<int>) {\n"
" %2 = func.call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" torch.prim.If.yield %2 : !torch.list<int>\n"
" } else {\n"
" %2 = torch.prim.ListConstruct : () -> !torch.list<int>\n"
" torch.prim.If.yield %2 : !torch.list<int>\n"
" }\n"
" return %1 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.native_layer_norm\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.optional<list<int>>, %arg3: !torch.optional<list<int>>, %arg4: !torch.float) -> !torch.tuple<list<int>, list<int>, list<int>> {\n" " func.func @\"__torch_mlir_shape_fn.aten.native_layer_norm\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.optional<list<int>>, %arg3: !torch.optional<list<int>>, %arg4: !torch.float) -> !torch.tuple<list<int>, list<int>, list<int>> {\n"
" %true = torch.constant.bool true\n" " %true = torch.constant.bool true\n"
" %none = torch.constant.none\n" " %none = torch.constant.none\n"

View File

@ -1047,6 +1047,11 @@ def atennll_loss_forward(self: List[int], target: List[int], weight: Optional
def atennll_loss_backward(grad_output: List[int], self: List[int], target: List[int], weight: Optional[List[int]], reduction: int, ignore_index: int, total_weight: List[int]) -> List[int]: def atennll_loss_backward(grad_output: List[int], self: List[int], target: List[int], weight: Optional[List[int]], reduction: int, ignore_index: int, total_weight: List[int]) -> List[int]:
return upstream_shape_functions.unary(self) return upstream_shape_functions.unary(self)
def atenmse_loss(self: List[int], target: List[int], reduction: int = 1) -> List[int]:
if reduction == 0:
return upstream_shape_functions.unary(self)
return []
@check_shape_function([ @check_shape_function([
Invocation(TensorOfShape(2, 5, 2, 2, 3), [2, 2, 3], None, None, 1e-6), # Basic case. Invocation(TensorOfShape(2, 5, 2, 2, 3), [2, 2, 3], None, None, 1e-6), # Basic case.
]) ])

View File

@ -406,6 +406,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
emit("aten::bincount : (Tensor, Tensor?, int) -> (Tensor)") emit("aten::bincount : (Tensor, Tensor?, int) -> (Tensor)")
emit("aten::linalg_vector_norm : (Tensor, Scalar, int[]?, bool, int?) -> (Tensor)") emit("aten::linalg_vector_norm : (Tensor, Scalar, int[]?, bool, int?) -> (Tensor)")
emit("aten::frobenius_norm.dim : (Tensor, int[], bool) -> (Tensor)") emit("aten::frobenius_norm.dim : (Tensor, int[], bool) -> (Tensor)")
emit("aten::mse_loss : (Tensor, Tensor, int) -> (Tensor)")
# Misc tensor ops. # Misc tensor ops.
emit("aten::constant_pad_nd : (Tensor, int[], Scalar) -> (Tensor)") emit("aten::constant_pad_nd : (Tensor, int[], Scalar) -> (Tensor)")

View File

@ -601,3 +601,61 @@ class ReduceFrobeniusNormKeepDimModule(torch.nn.Module):
@register_test_case(module_factory=lambda: ReduceFrobeniusNormKeepDimModule()) @register_test_case(module_factory=lambda: ReduceFrobeniusNormKeepDimModule())
def ReduceFrobeniusNormKeepDimModule_basic(module, tu: TestUtils): def ReduceFrobeniusNormKeepDimModule_basic(module, tu: TestUtils):
module.forward(torch.rand(3, 4, 5)) module.forward(torch.rand(3, 4, 5))
# ==============================================================================
class MseLossNoReductionModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1 , -1], torch.float32, True),
([-1 , -1], torch.float32, True),
])
def forward(self, x, y):
return torch.ops.aten.mse_loss(x, y, reduction=0)
@register_test_case(module_factory=lambda: MseLossNoReductionModule())
def MseLossNoReductionModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 4), tu.rand(2, 4))
class MseLossMeanReductionModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1 , -1], torch.float32, True),
([-1 , -1], torch.float32, True),
])
def forward(self, x, y):
return torch.ops.aten.mse_loss(x, y, reduction=1)
@register_test_case(module_factory=lambda: MseLossMeanReductionModule())
def MseLossMeanReductionModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 4), tu.rand(2, 4))
class MseLossSumReductionWithDifferentElemTypeModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1 , -1], torch.float32, True),
([-1 , -1], torch.float64, True),
])
def forward(self, x, y):
return torch.ops.aten.mse_loss(x, y, reduction=2)
@register_test_case(module_factory=lambda: MseLossSumReductionWithDifferentElemTypeModule())
def MseLossSumReductionWithDifferentElemTypeModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 4), tu.rand(2, 4).to(torch.float64))

View File

@ -991,3 +991,59 @@ func.func @torch.aten.roll(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.int,
%2 = torch.aten.roll %arg0, %0, %1 : !torch.vtensor<[?,?],f32>, !torch.list<int>, !torch.list<int> -> !torch.vtensor<[?,?],f32> %2 = torch.aten.roll %arg0, %0, %1 : !torch.vtensor<[?,?],f32>, !torch.list<int>, !torch.list<int> -> !torch.vtensor<[?,?],f32>
return %2 : !torch.vtensor<[?,?],f32> return %2 : !torch.vtensor<[?,?],f32>
} }
// -----
// CHECK-LABEL: func.func @torch.aten.mse_loss$no_reduction(
// CHECK-SAME: %[[SELF:.*]]: !torch.vtensor<[?,?],f32>,
// CHECK-SAME: %[[TARGET:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[REDUCTION:.*]] = torch.constant.int 0
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[SELF]], %[[TARGET]], %[[ALPHA]] : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32>, !torch.float -> !torch.vtensor<[?,?],f32>
// CHECK: %[[SUB_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB]], %[[SUB]] : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[SUB_SQUARE]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.mse_loss$no_reduction(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%int0 = torch.constant.int 0
%0 = torch.aten.mse_loss %arg0, %arg1, %int0 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32>, !torch.int -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.mse_loss$mean_reduction(
// CHECK-SAME: %[[SELF:.*]]: !torch.vtensor<[?,?],f32>,
// CHECK-SAME: %[[TARGET:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[REDUCTION:.*]] = torch.constant.int 1
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[SELF]], %[[TARGET]], %[[ALPHA]] : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32>, !torch.float -> !torch.vtensor<[?,?],f32>
// CHECK: %[[SUB_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB]], %[[SUB]] : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[SUB_SQUARE_SUM:.*]] = torch.aten.sum.dim_IntList %[[SUB_SQUARE]], %[[NONE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[?,?],f32>, !torch.none, !torch.bool, !torch.none -> !torch.vtensor<[?,?],f32>
// CHECK: %[[NUMEL:.*]] = torch.aten.numel %[[SUB_SQUARE]] : !torch.vtensor<[?,?],f32> -> !torch.int
// CHECK: %[[SUB_SQUARE_MEAN:.*]] = torch.aten.div.Scalar %[[SUB_SQUARE_SUM]], %[[NUMEL]] : !torch.vtensor<[?,?],f32>, !torch.int -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[SUB_SQUARE_MEAN]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.mse_loss$mean_reduction(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%int1 = torch.constant.int 1
%0 = torch.aten.mse_loss %arg0, %arg1, %int1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32>, !torch.int -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
// -----
// CHECK-LABEL: func.func @torch.aten.mse_loss$sum_reduction(
// CHECK-SAME: %[[SELF:.*]]: !torch.vtensor<[?,?],f32>,
// CHECK-SAME: %[[TARGET:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
// CHECK: %[[REDUCTION:.*]] = torch.constant.int 2
// CHECK: %[[ALPHA:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[SUB:.*]] = torch.aten.sub.Tensor %[[SELF]], %[[TARGET]], %[[ALPHA]] : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32>, !torch.float -> !torch.vtensor<[?,?],f32>
// CHECK: %[[SUB_SQUARE:.*]] = torch.aten.mul.Tensor %[[SUB]], %[[SUB]] : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32>
// CHECK: %[[FALSE:.*]] = torch.constant.bool false
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[SUB_SQUARE_SUM:.*]] = torch.aten.sum.dim_IntList %[[SUB_SQUARE]], %[[NONE]], %[[FALSE]], %[[NONE]] : !torch.vtensor<[?,?],f32>, !torch.none, !torch.bool, !torch.none -> !torch.vtensor<[?,?],f32>
// CHECK: return %[[SUB_SQUARE_SUM]] : !torch.vtensor<[?,?],f32>
func.func @torch.aten.mse_loss$sum_reduction(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> {
%int2 = torch.constant.int 2
%0 = torch.aten.mse_loss %arg0, %arg1, %int2 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32>, !torch.int -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}