OnnxToTorch support for onnx.InstanceNormalization op (#2710)

https://github.com/nod-ai/SHARK-Turbine/issues/327
pull/2924/head
aldesilv 2024-02-19 06:23:48 -08:00 committed by GitHub
parent 78e10ff09b
commit d29157b33f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 259 additions and 0 deletions

View File

@ -6203,6 +6203,37 @@ def Torch_AtenBatchNormOp : Torch_Op<"aten.batch_norm", [
}];
}
def Torch_AtenInstanceNormOp : Torch_Op<"aten.instance_norm", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::instance_norm : (Tensor, Tensor?, Tensor?, Tensor?, Tensor?, bool, float, float, bool) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$input,
AnyTorchOptionalTensorType:$weight,
AnyTorchOptionalTensorType:$bias,
AnyTorchOptionalTensorType:$running_mean,
AnyTorchOptionalTensorType:$running_var,
Torch_BoolType:$use_input_stats,
Torch_FloatType:$momentum,
Torch_FloatType:$eps,
Torch_BoolType:$cudnn_enabled
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenInstanceNormOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 9, 1);
}
void AtenInstanceNormOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 9, 1);
}
}];
}
def Torch_AtenNativeGroupNormOp : Torch_Op<"aten.native_group_norm", [
AllowsTypeRefinement,
HasValueSemantics,

View File

@ -392,6 +392,37 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
binder.op, resultType, lhs, rhs);
return success();
});
patterns.onOp(
"InstanceNormalization", 6,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
llvm::SmallVector<Value> operands;
float eps;
if (binder.tensorOperands(operands, 3) ||
binder.tensorResultType(resultType) || operands.size() != 3 ||
binder.f32FloatAttr(eps, "epsilon", 1e-05f)) {
return failure();
}
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value boolTrue =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
Value boolFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
auto epsValue = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getF64FloatAttr(eps));
auto momentum = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getF64FloatAttr(0.0f));
rewriter.replaceOpWithNewOp<Torch::AtenInstanceNormOp>(
binder.op, resultType, /* input */ operands[0],
/* weight */ operands[1],
/* bias */ operands[2], /* running mean */ none,
/* running var */ none,
/* use input stats */ boolTrue, momentum, epsValue,
/* cudnn enabled */ boolFalse);
return success();
});
patterns.onOp(
"Max", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;

View File

@ -8784,6 +8784,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %3 = torch.prim.TupleConstruct %0, %1, %2 : !torch.list<int>, !torch.list<int>, !torch.list<int> -> !torch.tuple<list<int>, list<int>, list<int>>\n"
" return %3 : !torch.tuple<list<int>, list<int>, list<int>>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.instance_norm\"(%arg0: !torch.list<int>, %arg1: !torch.optional<list<int>>, %arg2: !torch.optional<list<int>>, %arg3: !torch.optional<list<int>>, %arg4: !torch.optional<list<int>>, %arg5: !torch.bool, %arg6: !torch.float, %arg7: !torch.float, %arg8: !torch.bool) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.slice.Tensor\"(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.optional<int>, %arg3: !torch.optional<int>, %arg4: !torch.int) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.slice(%arg0, %arg1, %arg2, %arg3, %arg4) : (!torch.list<int>, !torch.int, !torch.optional<int>, !torch.optional<int>, !torch.int) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
@ -9643,6 +9647,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %3 = torch.prim.TupleConstruct %0#1, %0#1, %0#1 : !torch.int, !torch.int, !torch.int -> !torch.tuple<int, int, int>\n"
" return %3 : !torch.tuple<int, int, int>\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.instance_norm\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.optional<tuple<int, int>>, %arg2: !torch.optional<tuple<int, int>>, %arg3: !torch.optional<tuple<int, int>>, %arg4: !torch.optional<tuple<int, int>>, %arg5: !torch.bool, %arg6: !torch.float, %arg7: !torch.float, %arg8: !torch.bool) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" return %0#1 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.bernoulli_.float\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.float, %arg2: !torch.any) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" return %0#1 : !torch.int\n"

View File

@ -3962,6 +3962,151 @@ class DecomposeAtenLayerNormOp : public OpRewritePattern<AtenLayerNormOp> {
};
} // namespace
namespace {
class DecomposeAtenInstanceNormOp
: public OpRewritePattern<AtenInstanceNormOp> {
using OpRewritePattern<AtenInstanceNormOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenInstanceNormOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto context = op.getContext();
auto inputTy = op.getInput().getType().cast<BaseTensorType>();
int64_t inputRank = inputTy.getSizes().size();
auto reduceDimInts =
llvm::SmallVector<int64_t>({inputRank - 2, inputRank - 1});
SmallVector<int64_t> reducedShape(inputTy.getSizes());
reducedShape[inputRank - 1] = 1;
reducedShape[inputRank - 2] = 1;
Type dtype = inputTy.getOptionalDtype();
Type reducedTy = ValueTensorType::get(op.getContext(),
llvm::ArrayRef(reducedShape), dtype);
auto sizeListType = ListType::get(IntType::get(context));
SmallVector<Value> reduceDimVals;
reduceDimVals.reserve(reduceDimInts.size());
std::transform(reduceDimInts.begin(), reduceDimInts.end(),
std::back_inserter(reduceDimVals), [&](int64_t d) {
return rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(d));
});
Value reduceDimList =
rewriter.create<PrimListConstructOp>(loc, sizeListType, reduceDimVals);
Value cstTrue = rewriter.create<Torch::ConstantBoolOp>(loc, true);
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
Value one = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
// mean(x)
Value inputMean = rewriter.create<AtenMeanDimOp>(
loc, reducedTy, op.getInput(), reduceDimList, cstTrue, none);
// x - mean(x)
Value inputMeanExpanded =
rewriter.create<AtenExpandAsOp>(loc, inputTy, inputMean, op.getInput());
Value inputSubMean = rewriter.create<AtenSubTensorOp>(
loc, inputTy, op.getInput(), inputMeanExpanded, one);
// (x - mean(x))^2
Value inputSubMeanSquare = rewriter.create<AtenMulTensorOp>(
loc, inputTy, inputSubMean, inputSubMean);
Value variancesum = rewriter.create<AtenSumDimIntListOp>(
loc, reducedTy, inputSubMeanSquare, reduceDimList, cstTrue,
/*dtype=*/none);
Value hw = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(inputTy.getSizes()[inputRank - 1] *
inputTy.getSizes()[inputRank - 2]));
Value inputVar =
rewriter.create<AtenDivScalarOp>(loc, reducedTy, variancesum, hw);
// rsqrt(var(x) + eps)
Value inputVarPlusEps = rewriter.create<AtenAddScalarOp>(
loc, reducedTy, inputVar, op.getEps(), one);
Value inputRsqrtVar =
rewriter.create<AtenRsqrtOp>(loc, reducedTy, inputVarPlusEps);
// (x - mean(x)) * rsqrt(var(x) + eps)
Value inputRsqrtVarExpanded = rewriter.create<AtenExpandAsOp>(
loc, inputTy, inputRsqrtVar, op.getInput());
Value inputNormalized = rewriter.create<AtenMulTensorOp>(
loc, inputTy, inputSubMean, inputRsqrtVarExpanded);
Value out = rewriter.create<TensorStaticInfoCastOp>(
loc, op.getResult().getType(), inputNormalized);
Value weight = op.getWeight();
auto weightTy = weight.getType().cast<BaseTensorType>();
dtype = weightTy.getOptionalDtype();
SmallVector<int64_t> weightShape(weightTy.getSizes());
SmallVector<int64_t> newWeightShape;
newWeightShape.push_back(1);
newWeightShape.append(weightShape);
Value zero = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Type newWeightTy = ValueTensorType::get(
op.getContext(), llvm::ArrayRef(newWeightShape), dtype);
weight = rewriter.create<AtenUnsqueezeOp>(loc, newWeightTy, weight, zero);
Value two = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(2));
newWeightShape.push_back(1);
newWeightTy = ValueTensorType::get(op.getContext(),
llvm::ArrayRef(newWeightShape), dtype);
weight = rewriter.create<AtenUnsqueezeOp>(loc, newWeightTy, weight, two);
Value three = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(3));
newWeightShape.push_back(1);
newWeightTy = ValueTensorType::get(op.getContext(),
llvm::ArrayRef(newWeightShape), dtype);
weight = rewriter.create<AtenUnsqueezeOp>(loc, newWeightTy, weight, three);
Value weightExpanded =
rewriter.create<AtenExpandAsOp>(loc, inputTy, weight, op.getInput());
Value bias = op.getBias();
auto biasTy = bias.getType().cast<BaseTensorType>();
dtype = biasTy.getOptionalDtype();
SmallVector<int64_t> biasShape(biasTy.getSizes());
SmallVector<int64_t> newBiasShape;
newBiasShape.push_back(1);
newBiasShape.append(biasShape);
Type newBiasTy = ValueTensorType::get(op.getContext(),
llvm::ArrayRef(newBiasShape), dtype);
bias = rewriter.create<AtenUnsqueezeOp>(loc, newBiasTy, bias, zero);
newBiasShape.push_back(1);
newBiasTy = ValueTensorType::get(op.getContext(),
llvm::ArrayRef(newBiasShape), dtype);
bias = rewriter.create<AtenUnsqueezeOp>(loc, newBiasTy, bias, two);
newBiasShape.push_back(1);
newBiasTy = ValueTensorType::get(op.getContext(),
llvm::ArrayRef(newBiasShape), dtype);
bias = rewriter.create<AtenUnsqueezeOp>(loc, newBiasTy, bias, three);
Value biasExpanded =
rewriter.create<AtenExpandAsOp>(loc, inputTy, bias, op.getInput());
out = rewriter.create<AtenMulTensorOp>(loc, out.getType(), out,
weightExpanded);
out = rewriter.create<AtenAddTensorOp>(loc, out.getType(), out,
biasExpanded, one);
rewriter.replaceOp(op, out);
return success();
}
};
} // namespace
namespace {
class DecomposeAtenNativeLayerNormOp
: public OpRewritePattern<AtenNativeLayerNormOp> {
@ -6733,6 +6878,7 @@ public:
DecomposeAtenAddCLikeOp<AtenAddcmulOp, AtenMulTensorOp>>(patterns);
addPatternIfTargetOpIsIllegal<
DecomposeAtenAddCLikeOp<AtenAddcdivOp, AtenDivTensorOp>>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenInstanceNormOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenLayerNormOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenNativeLayerNormOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenGroupNormOp>(patterns);

View File

@ -409,6 +409,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
});
target.addIllegalOp<AtenAddcmulOp>();
target.addIllegalOp<AtenAddcdivOp>();
target.addIllegalOp<AtenInstanceNormOp>();
target.addIllegalOp<AtenLayerNormOp>();
target.addIllegalOp<AtenNativeLayerNormOp>();
target.addIllegalOp<AtenGroupNormOp>();

View File

@ -233,6 +233,7 @@ TORCHDYNAMO_XFAIL_SET = {
# END tests failing due to: 'torch.aten.mul.Tensor' op operand #1 must be Any Torch tensor type, but got '!torch.float'
# START tests failing due to: 'torch.aten.add.Tensor' op operand #1 must be Any Torch tensor type, but got '!torch.float'
"AtenInstanceNormModule_basic",
"BatchNorm1DModule_basic",
"BatchNorm1DWith2DInputModule_basic",
"BatchNorm2DModule_basic",
@ -898,6 +899,7 @@ TOSA_PASS_SET = {
"AtenEyeModuleFalsePinMemory_basic",
"AtenEyeModuleFloat2D_basic",
"AtenRoundIntModule_basic",
"AtenInstanceNormModule_basic",
"AtenToDeviceModule_basic",
"BaddbmmBroadcast1DInputModule_basic",
"BaddbmmBroadcast2DInputModule_basic",
@ -1306,6 +1308,8 @@ MAKE_FX_TOSA_PASS_SET = (TOSA_PASS_SET | {
"Conv2dNoPaddingModule_basic",
"Conv2dWithPaddingDilationStrideModule_basic",
"Conv2dWithPaddingModule_basic",
"AtenInstanceNormModule_basic",
}
LTC_CRASHING_SET = {

View File

@ -1415,6 +1415,9 @@ def atengroup_norm〡shape(input: List[int], num_groups: int, weight: Optiona
def atennative_group_norm〡shape(input: List[int], weight: Optional[List[int]], bias: Optional[List[int]], N: int, C: int, HxW: int, group: int, eps: float) -> Tuple[List[int], List[int], List[int]]:
return upstream_shape_functions.unary(input), [N, group], [N, group]
def ateninstance_norm〡shape(input: List[int], weight: Optional[List[int]], bias: Optional[List[int]], running_mean: Optional[List[int]], running_var: Optional[List[int]], use_input_stats: bool, momentum: float, eps: float, cudnn_enabled: bool) -> List[int]:
return upstream_shape_functions.unary(input)
def atensliceTensor〡shape(self: List[int], dim: int = 0, start: Optional[int] = None, end: Optional[int] = None, step: int = 1) -> List[int]:
return upstream_shape_functions.slice(self, dim, start, end, step)
@ -2048,6 +2051,11 @@ def atennative_group_norm〡dtype(input_rank_dtype: Tuple[int, int], weight_r
assert not is_integer_dtype(input_dtype)
return input_dtype, input_dtype, input_dtype
# device is not supported hence unable to check the dtype function
def ateninstance_norm〡dtype(input_rank_dtype: Tuple[int, int], weight_rank_dtype: Optional[Tuple[int, int]], bias_rank_dtype: Optional[Tuple[int, int]], running_mean_rank_dtype: Optional[Tuple[int, int]], running_var_rank_dtype: Optional[Tuple[int, int]], use_input_stats: bool, momentum: float, eps: float, cudnn_enabled: bool) -> int:
input_rank, input_dtype = input_rank_dtype
return input_dtype
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
def atenbernoulli_float〡dtype(self_rank_dtype: Tuple[int, int], p: float = 0.5, generator: Any = None) -> int:
self_rank, self_dtype = self_rank_dtype

View File

@ -437,6 +437,9 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
emit(
"aten::batch_norm : (Tensor, Tensor?, Tensor?, Tensor?, Tensor?, bool, float, float, bool) -> (Tensor)"
)
emit(
"aten::instance_norm : (Tensor, Tensor?, Tensor?, Tensor?, Tensor?, bool, float, float, bool) -> (Tensor)"
)
emit(
"aten::native_group_norm : (Tensor, Tensor?, Tensor?, int, int, int, int, float) -> (Tensor, Tensor, Tensor)"
)

View File

@ -489,3 +489,21 @@ class LayerNormNormalizeOverAllDimsModule(torch.nn.Module):
def LayerNormNormalizeOverAllDimsModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 2, 3))
class AtenInstanceNormModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([1, 2, 1, 3], torch.float32, True),
([2], torch.float32, True),
([2], torch.float32, True)
])
def forward(self, x, w, b):
return torch.ops.aten.instance_norm(x, w, b, None,
None, True, 0.0, 1e-05, False)
@register_test_case(module_factory=lambda: AtenInstanceNormModule())
def AtenInstanceNormModule_basic(module, tu: TestUtils):
module.forward(tu.rand(1, 2, 1, 3), tu.rand(2), tu.rand(2))

View File

@ -603,6 +603,15 @@ func.func @test_globalaveragepool_precomputed(%arg0: !torch.vtensor<[1,1,3,3],f3
// -----
// CHECK-LABEL: func.func @test_instancenorm
func.func @test_instancenorm(%arg0: !torch.vtensor<[1,2,1,3],f32>, %arg1: !torch.vtensor<[2],f32>, %arg2: !torch.vtensor<[2],f32>) -> !torch.vtensor<[1,2,1,3],f32> attributes {torch.onnx_meta.ir_version = 3 : si64, torch.onnx_meta.opset_version = 6 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: torch.aten.instance_norm %arg0, %arg1, %arg2, %none, %none, %true, %float0.000000e00, %float9.999990e-06, %false : !torch.vtensor<[1,2,1,3],f32>, !torch.vtensor<[2],f32>, !torch.vtensor<[2],f32>, !torch.none, !torch.none, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[1,2,1,3],f32>
%0 = torch.operator "onnx.InstanceNormalization"(%arg0, %arg1, %arg2) : (!torch.vtensor<[1,2,1,3],f32>, !torch.vtensor<[2],f32>, !torch.vtensor<[2],f32>) -> !torch.vtensor<[1,2,1,3],f32>
return %0 : !torch.vtensor<[1,2,1,3],f32>
}
// -----
// CHECK-LABEL: func.func @test_not_2d
func.func @test_not_2d(%arg0: !torch.vtensor<[3,4],i1>) -> !torch.vtensor<[3,4],i1> attributes {torch.onnx_meta.ir_version = 3 : si64, torch.onnx_meta.opset_version = 1 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: torch.aten.bitwise_not %arg0 : !torch.vtensor<[3,4],i1> -> !torch.vtensor<[3,4],i1>