mirror of https://github.com/llvm/torch-mlir
[MLIR][TORCH] Add e2e support for aten.var_mean op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>pull/1715/head
parent
143a8f378d
commit
d4862ec611
|
@ -811,4 +811,6 @@ LTC_XFAIL_SET = {
|
||||||
"NllLossModule_sum_basic",
|
"NllLossModule_sum_basic",
|
||||||
"ResNet18Module_basic",
|
"ResNet18Module_basic",
|
||||||
"ResNet18StaticModule_basic",
|
"ResNet18StaticModule_basic",
|
||||||
|
"VarMeanBiasedModule_basic",
|
||||||
|
"VarMeanUnbiasedModule_basic",
|
||||||
}
|
}
|
||||||
|
|
|
@ -5008,6 +5008,31 @@ def Torch_AtenVarMeanCorrectionOp : Torch_Op<"aten.var_mean.correction", [
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_AtenVarMeanOp : Torch_Op<"aten.var_mean", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics,
|
||||||
|
ReadOnly
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::var_mean : (Tensor, bool) -> (Tensor, Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self,
|
||||||
|
Torch_BoolType:$unbiased
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchTensorType:$result0,
|
||||||
|
AnyTorchTensorType:$result1
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenVarMeanOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 2, 2);
|
||||||
|
}
|
||||||
|
void AtenVarMeanOp::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 2, 2);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_AtenNllLossForwardOp : Torch_Op<"aten.nll_loss_forward", [
|
def Torch_AtenNllLossForwardOp : Torch_Op<"aten.nll_loss_forward", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics,
|
HasValueSemantics,
|
||||||
|
|
|
@ -3284,6 +3284,26 @@ public:
|
||||||
};
|
};
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
class DecomposeAtenVarMeanOp : public OpRewritePattern<AtenVarMeanOp> {
|
||||||
|
public:
|
||||||
|
using OpRewritePattern::OpRewritePattern;
|
||||||
|
LogicalResult matchAndRewrite(AtenVarMeanOp op,
|
||||||
|
PatternRewriter &rewriter) const override {
|
||||||
|
Location loc = op.getLoc();
|
||||||
|
Value falseVal = rewriter.create<ConstantBoolOp>(loc, false);
|
||||||
|
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
|
||||||
|
Value var = rewriter.create<AtenVarDimOp>(loc, op.getType(0), op.getSelf(),
|
||||||
|
/*dim=*/noneVal, op.getUnbiased(),
|
||||||
|
/*keepdim=*/falseVal);
|
||||||
|
Value mean = rewriter.create<AtenMeanOp>(loc, op.getType(0), op.getSelf(),
|
||||||
|
/*dtype=*/noneVal);
|
||||||
|
rewriter.replaceOp(op, {var, mean});
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
class DecomposeComplexOpsPass
|
class DecomposeComplexOpsPass
|
||||||
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
|
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
|
||||||
|
@ -3428,6 +3448,7 @@ public:
|
||||||
addPatternIfTargetOpIsIllegal<DecomposePrimsConvertElementTypeOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposePrimsConvertElementTypeOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnGeneratorOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnGeneratorOp>(patterns);
|
||||||
|
addPatternIfTargetOpIsIllegal<DecomposeAtenVarMeanOp>(patterns);
|
||||||
|
|
||||||
GreedyRewriteConfig config;
|
GreedyRewriteConfig config;
|
||||||
config.useTopDownTraversal = true;
|
config.useTopDownTraversal = true;
|
||||||
|
|
|
@ -418,6 +418,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
||||||
target.addIllegalOp<PrimsConvertElementTypeOp>();
|
target.addIllegalOp<PrimsConvertElementTypeOp>();
|
||||||
target.addIllegalOp<AtenRandnOp>();
|
target.addIllegalOp<AtenRandnOp>();
|
||||||
target.addIllegalOp<AtenRandnGeneratorOp>();
|
target.addIllegalOp<AtenRandnGeneratorOp>();
|
||||||
|
target.addIllegalOp<AtenVarMeanOp>();
|
||||||
for (std::string opName : backendLegalOps) {
|
for (std::string opName : backendLegalOps) {
|
||||||
target.addLegalOp(OperationName(opName, context));
|
target.addLegalOp(OperationName(opName, context));
|
||||||
}
|
}
|
||||||
|
|
|
@ -1182,7 +1182,7 @@ void TypeAnalysis::visitOperation(Operation *op,
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (isa<AtenVarMeanCorrectionOp>(op)) {
|
if (isa<AtenVarMeanCorrectionOp, AtenVarMeanOp>(op)) {
|
||||||
auto input = operands[0]->getValue();
|
auto input = operands[0]->getValue();
|
||||||
auto knowledge =
|
auto knowledge =
|
||||||
ValueKnowledge::getTensorPessimisticValueState(op->getContext());
|
ValueKnowledge::getTensorPessimisticValueState(op->getContext());
|
||||||
|
|
|
@ -5780,6 +5780,12 @@ StringRef mlir::torch::Torch::getShapeLibrary() {
|
||||||
" %2 = torch.prim.TupleConstruct %1, %1 : !torch.list<int>, !torch.list<int> -> !torch.tuple<list<int>, list<int>>\n"
|
" %2 = torch.prim.TupleConstruct %1, %1 : !torch.list<int>, !torch.list<int> -> !torch.tuple<list<int>, list<int>>\n"
|
||||||
" return %2 : !torch.tuple<list<int>, list<int>>\n"
|
" return %2 : !torch.tuple<list<int>, list<int>>\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_shape_fn.aten.var_mean\"(%arg0: !torch.list<int>, %arg1: !torch.bool) -> !torch.tuple<list<int>, list<int>> {\n"
|
||||||
|
" %0 = torch.prim.ListConstruct : () -> !torch.list<int>\n"
|
||||||
|
" %1 = torch.prim.ListConstruct : () -> !torch.list<int>\n"
|
||||||
|
" %2 = torch.prim.TupleConstruct %0, %1 : !torch.list<int>, !torch.list<int> -> !torch.tuple<list<int>, list<int>>\n"
|
||||||
|
" return %2 : !torch.tuple<list<int>, list<int>>\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_shape_fn.aten.std\"(%arg0: !torch.list<int>, %arg1: !torch.bool) -> !torch.list<int> {\n"
|
" func.func @\"__torch_mlir_shape_fn.aten.std\"(%arg0: !torch.list<int>, %arg1: !torch.bool) -> !torch.list<int> {\n"
|
||||||
" %0 = torch.prim.ListConstruct : () -> !torch.list<int>\n"
|
" %0 = torch.prim.ListConstruct : () -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
|
|
|
@ -544,13 +544,16 @@ def aten〇var(self: List[int], unbiased: bool = True) -> List[int]:
|
||||||
def aten〇var〇dim(self: List[int], dim: Optional[List[int]], unbiased: bool = True, keepdim: bool = False) -> List[int]:
|
def aten〇var〇dim(self: List[int], dim: Optional[List[int]], unbiased: bool = True, keepdim: bool = False) -> List[int]:
|
||||||
return upstream_shape_functions.sum_mean_dim(self, dim, keepdim, None)
|
return upstream_shape_functions.sum_mean_dim(self, dim, keepdim, None)
|
||||||
|
|
||||||
def aten〇var〇correction(self: List[int], dim: Optional[List[int]], correction: Optional[int], keepdim: bool = False) -> List[int]:
|
def aten〇var〇correction(self: List[int], dim: Optional[List[int]] = None, correction: Optional[int] = None, keepdim: bool = False) -> List[int]:
|
||||||
return upstream_shape_functions.sum_mean_dim(self, dim, keepdim, None)
|
return upstream_shape_functions.sum_mean_dim(self, dim, keepdim, None)
|
||||||
|
|
||||||
def aten〇var_mean〇correction(self: List[int], dim: Optional[List[int]], correction: Optional[int], keepdim: bool = False) -> Tuple[List[int], List[int]]:
|
def aten〇var_mean〇correction(self: List[int], dim: Optional[List[int]] = None, correction: Optional[int] = None, keepdim: bool = False) -> Tuple[List[int], List[int]]:
|
||||||
out = upstream_shape_functions.sum_mean_dim(self, dim, keepdim, None)
|
out = upstream_shape_functions.sum_mean_dim(self, dim, keepdim, None)
|
||||||
return out, out
|
return out, out
|
||||||
|
|
||||||
|
def aten〇var_mean(self: List[int], unbiased: bool = True) -> Tuple[List[int], List[int]]:
|
||||||
|
return [], []
|
||||||
|
|
||||||
def aten〇std(self: List[int], unbiased: bool = True) -> List[int]:
|
def aten〇std(self: List[int], unbiased: bool = True) -> List[int]:
|
||||||
return []
|
return []
|
||||||
|
|
||||||
|
|
|
@ -409,6 +409,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
||||||
emit("aten::var.dim : (Tensor, int[]?, bool, bool) -> (Tensor)")
|
emit("aten::var.dim : (Tensor, int[]?, bool, bool) -> (Tensor)")
|
||||||
emit("aten::var.correction : (Tensor, int[]?, int?, bool) -> (Tensor)")
|
emit("aten::var.correction : (Tensor, int[]?, int?, bool) -> (Tensor)")
|
||||||
emit("aten::var_mean.correction : (Tensor, int[]?, int?, bool) -> (Tensor, Tensor)")
|
emit("aten::var_mean.correction : (Tensor, int[]?, int?, bool) -> (Tensor, Tensor)")
|
||||||
|
emit("aten::var_mean : (Tensor, bool) -> (Tensor, Tensor)")
|
||||||
emit("aten::nll_loss_forward : (Tensor, Tensor, Tensor?, int, int) -> (Tensor, Tensor)")
|
emit("aten::nll_loss_forward : (Tensor, Tensor, Tensor?, int, int) -> (Tensor, Tensor)")
|
||||||
emit("aten::nll_loss_backward : (Tensor, Tensor, Tensor, Tensor?, int, int, Tensor) -> (Tensor)")
|
emit("aten::nll_loss_backward : (Tensor, Tensor, Tensor, Tensor?, int, int, Tensor) -> (Tensor)")
|
||||||
emit("aten::bincount : (Tensor, Tensor?, int) -> (Tensor)")
|
emit("aten::bincount : (Tensor, Tensor?, int) -> (Tensor)")
|
||||||
|
|
|
@ -799,3 +799,47 @@ class VarMeanCorrectionNoneModule(torch.nn.Module):
|
||||||
@register_test_case(module_factory=lambda: VarMeanCorrectionNoneModule())
|
@register_test_case(module_factory=lambda: VarMeanCorrectionNoneModule())
|
||||||
def VarMeanCorrectionNoneModule_basic(module, tu: TestUtils):
|
def VarMeanCorrectionNoneModule_basic(module, tu: TestUtils):
|
||||||
module.forward(tu.rand(3, 4, 7))
|
module.forward(tu.rand(3, 4, 7))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class VarMeanUnbiasedModule(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1, -1], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.ops.aten.var_mean(x)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: VarMeanUnbiasedModule())
|
||||||
|
def VarMeanUnbiasedModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 4, 7))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class VarMeanBiasedModule(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1, -1], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.ops.aten.var_mean(x, unbiased=False)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: VarMeanBiasedModule())
|
||||||
|
def VarMeanBiasedModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 4, 7))
|
||||||
|
|
Loading…
Reference in New Issue