mirror of https://github.com/llvm/torch-mlir
Bump LLVM to llvm/llvm-project@bb180856ec (#2895)
Includes some minor first for `AffineMap::inferFromExprList`pull/2889/head
parent
7d33ba69ac
commit
d83b576c6e
|
@ -1 +1 @@
|
|||
Subproject commit 70eb0e37a86747f9266e4c8380baa89746f5e23b
|
||||
Subproject commit bb180856ec28efe305dc77ca4bb3db12d8932edf
|
|
@ -498,7 +498,8 @@ public:
|
|||
resultExpr.push_back(rewriter.getAffineDimExpr(i));
|
||||
}
|
||||
|
||||
auto indexingMaps = AffineMap::inferFromExprList({indicesExpr, resultExpr});
|
||||
auto indexingMaps = AffineMap::inferFromExprList({indicesExpr, resultExpr},
|
||||
rewriter.getContext());
|
||||
|
||||
Value finalRes =
|
||||
rewriter
|
||||
|
|
|
@ -512,8 +512,8 @@ public:
|
|||
resultShape.insert(resultShape.end(), {lhsDim0, rhsDim1});
|
||||
Value zeroTensor =
|
||||
createZeroInitTensor(rewriter, loc, resultShape, elementType);
|
||||
auto indexingMaps =
|
||||
AffineMap::inferFromExprList({lhsExpr, rhsExpr, outExpr});
|
||||
auto indexingMaps = AffineMap::inferFromExprList(
|
||||
{lhsExpr, rhsExpr, outExpr}, rewriter.getContext());
|
||||
iteratorTypes.insert(iteratorTypes.end(),
|
||||
{utils::IteratorType::parallel,
|
||||
utils::IteratorType::reduction,
|
||||
|
|
|
@ -442,8 +442,8 @@ public:
|
|||
|
||||
// Here we have six dimensions, each corresponding to N, C, Hout, Wout, kH,
|
||||
// and kW, respectively, as described in the algorithm above.
|
||||
SmallVector<AffineMap> indexingMaps =
|
||||
AffineMap::inferFromExprList({inputExprs, kernelExprs, outputExprs});
|
||||
SmallVector<AffineMap> indexingMaps = AffineMap::inferFromExprList(
|
||||
{inputExprs, kernelExprs, outputExprs}, rewriter.getContext());
|
||||
SmallVector<utils::IteratorType> iteratorTypes(
|
||||
4, utils::IteratorType::parallel);
|
||||
iteratorTypes.push_back(utils::IteratorType::reduction);
|
||||
|
@ -724,7 +724,7 @@ public:
|
|||
kSizeTensorExprs.push_back(rewriter.getAffineDimExpr(2));
|
||||
kIterExprs.push_back(rewriter.getAffineDimExpr(3));
|
||||
SmallVector<AffineMap> indexingMaps = AffineMap::inferFromExprList(
|
||||
{kIterExprs, outputExprs, kSizeTensorExprs});
|
||||
{kIterExprs, outputExprs, kSizeTensorExprs}, rewriter.getContext());
|
||||
SmallVector<utils::IteratorType> iteratorTypes(
|
||||
3, utils::IteratorType::parallel);
|
||||
iteratorTypes.push_back(utils::IteratorType::reduction);
|
||||
|
@ -774,8 +774,8 @@ public:
|
|||
|
||||
// make a linalg generic to divide each element by the corresponding
|
||||
// Kernel Width. This step is only necessary for avg pooling.
|
||||
SmallVector<AffineMap> indexingMaps1 =
|
||||
AffineMap::inferFromExprList({kSizeTensorExprs, outputExprs});
|
||||
SmallVector<AffineMap> indexingMaps1 = AffineMap::inferFromExprList(
|
||||
{kSizeTensorExprs, outputExprs}, rewriter.getContext());
|
||||
SmallVector<utils::IteratorType> iteratorTypes1(
|
||||
3, utils::IteratorType::parallel);
|
||||
auto output = rewriter.create<linalg::GenericOp>(
|
||||
|
@ -916,8 +916,8 @@ public:
|
|||
for (unsigned i = rank; i < 2 * rank - 2; i++) {
|
||||
kIterExprs.push_back(rewriter.getAffineDimExpr(i));
|
||||
}
|
||||
SmallVector<AffineMap> indexingMaps =
|
||||
AffineMap::inferFromExprList({kIterExprs, outputExprs, auxTensorExprs});
|
||||
SmallVector<AffineMap> indexingMaps = AffineMap::inferFromExprList(
|
||||
{kIterExprs, outputExprs, auxTensorExprs}, rewriter.getContext());
|
||||
SmallVector<utils::IteratorType> iteratorTypes(
|
||||
rank, utils::IteratorType::parallel);
|
||||
for (unsigned i = 0; i < rank - 2; i++) {
|
||||
|
|
|
@ -167,7 +167,8 @@ public:
|
|||
resultExprs.push_back(rewriter.getAffineDimExpr(size.index()));
|
||||
}
|
||||
}
|
||||
auto maps = AffineMap::inferFromExprList({exprs, resultExprs, resultExprs});
|
||||
auto maps = AffineMap::inferFromExprList({exprs, resultExprs, resultExprs},
|
||||
rewriter.getContext());
|
||||
auto linalgOp = rewriter.create<linalg::GenericOp>(
|
||||
loc,
|
||||
ArrayRef<Type>({filledTensorVal.getType(), filledTensorIdx.getType()}),
|
||||
|
|
|
@ -197,7 +197,8 @@ Value torch_to_linalg::createReductionLinalgGeneric(
|
|||
}
|
||||
}
|
||||
|
||||
auto indexingMaps = AffineMap::inferFromExprList({exprs, resultExprs});
|
||||
auto indexingMaps =
|
||||
AffineMap::inferFromExprList({exprs, resultExprs}, b.getContext());
|
||||
Value accumulator =
|
||||
createInitTensor(b, loc, resultShape, initElem.getType(), initElem);
|
||||
|
||||
|
|
|
@ -1064,7 +1064,8 @@ public:
|
|||
rewriter.getAffineDimExpr(tensorOperandRank));
|
||||
|
||||
SmallVector<AffineMap> indexingMaps = AffineMap::inferFromExprList(
|
||||
{originalIndicesDimExprs, updatedIndicesDimExprs});
|
||||
{originalIndicesDimExprs, updatedIndicesDimExprs},
|
||||
rewriter.getContext());
|
||||
SmallVector<utils::IteratorType> iteratorTypes(
|
||||
tensorOperandRank + 1, utils::IteratorType::parallel);
|
||||
|
||||
|
|
Loading…
Reference in New Issue