mirror of https://github.com/llvm/torch-mlir
[Stablehlo] support lowering sinh & cosh to stablehlo (#3213)
parent
c1967b607f
commit
db3842f2e8
|
@ -1981,7 +1981,9 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
|
|||
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenSinOp, stablehlo::SineOp);
|
||||
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenCosOp, stablehlo::CosineOp);
|
||||
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenAsinOp, chlo::AsinOp);
|
||||
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenSinhOp, chlo::SinhOp);
|
||||
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenAcosOp, chlo::AcosOp);
|
||||
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenCoshOp, chlo::CoshOp);
|
||||
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenAtanOp, chlo::AtanOp);
|
||||
#undef INSERT_UNARY_PROMOTE_TO_FP_PATTERN
|
||||
|
||||
|
|
|
@ -6332,6 +6332,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.sinh\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.asin\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
|
@ -9699,6 +9703,11 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||
" return %1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.sinh\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||
" return %1 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.asin\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
|
||||
|
|
|
@ -636,8 +636,6 @@ FX_IMPORTER_STABLEHLO_XFAIL_SET = {
|
|||
"ElementwiseBitwiseRightShiftInt32Module_basic",
|
||||
"ElementwiseBitwiseRightShiftInt64Module_basic",
|
||||
"ElementwiseBitwiseRightShiftInt8Module_basic",
|
||||
"ElementwiseCoshIntModule_basic",
|
||||
"ElementwiseCoshModule_basic",
|
||||
"ElementwiseDequantizePerChannelModule_basic",
|
||||
"ElementwiseDequantizePerTensorModule_basic",
|
||||
"ElementwiseErfIntModule_basic",
|
||||
|
@ -1465,6 +1463,10 @@ STABLEHLO_PASS_SET = {
|
|||
"ElementwiseSinIntModule_basic",
|
||||
"ElementwiseSqrtIntModule_basic",
|
||||
"ElementwiseUnaryIntModule_basic",
|
||||
"ElementwiseCoshIntModule_basic",
|
||||
"ElementwiseCoshModule_basic",
|
||||
"ElementwiseSinhIntModule_basic",
|
||||
"ElementwiseSinhModule_basic",
|
||||
}
|
||||
|
||||
STABLEHLO_CRASHING_SET = {
|
||||
|
@ -2326,6 +2328,8 @@ ONNX_XFAIL_SET = {
|
|||
"ElementwiseBitwiseRightShiftInt8Module_basic",
|
||||
"ElementwiseBitwiseXorModule_basic",
|
||||
"ElementwiseBitwiseXorStaticShapeModule_basic",
|
||||
"ElementwiseSinhIntModule_basic",
|
||||
"ElementwiseSinhModule_basic",
|
||||
"ElementwiseCoshIntModule_basic",
|
||||
"ElementwiseCoshModule_basic",
|
||||
"ElementwiseDequantizePerChannelModule_basic",
|
||||
|
|
|
@ -121,6 +121,9 @@ def aten〇fake_quantize_per_tensor_affine〡shape(self: List[int], scale: float
|
|||
def aten〇sin〡shape(self: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
def aten〇sinh〡shape(self: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
def aten〇asin〡shape(self: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.unary(self)
|
||||
|
||||
|
@ -2014,6 +2017,11 @@ def aten〇sin〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
|||
self_rank, self_dtype = self_rank_dtype
|
||||
return _get_dtype_of_floating_point_op(self_dtype)
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
||||
def aten〇sinh〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
return _get_dtype_of_floating_point_op(self_dtype)
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
|
||||
def aten〇asin〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
|
|
|
@ -63,6 +63,50 @@ def ElementwiseUnaryIntModule_basic(module, tu: TestUtils):
|
|||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseSinhModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, a):
|
||||
return torch.sinh(a)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseSinhModule())
|
||||
def ElementwiseSinhModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseSinhIntModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.int32, True),
|
||||
])
|
||||
def forward(self, a):
|
||||
return torch.sinh(a)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseSinhIntModule())
|
||||
def ElementwiseSinhIntModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.randint(3, 4, low=1, high=10).to(torch.int32))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseCoshModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
|
|
Loading…
Reference in New Issue