[Stablehlo] support lowering sinh & cosh to stablehlo (#3213)

pull/3212/head
Yuanqiang Liu 2024-04-23 19:54:58 +08:00 committed by GitHub
parent c1967b607f
commit db3842f2e8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 69 additions and 2 deletions

View File

@ -1981,7 +1981,9 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenSinOp, stablehlo::SineOp); INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenSinOp, stablehlo::SineOp);
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenCosOp, stablehlo::CosineOp); INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenCosOp, stablehlo::CosineOp);
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenAsinOp, chlo::AsinOp); INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenAsinOp, chlo::AsinOp);
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenSinhOp, chlo::SinhOp);
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenAcosOp, chlo::AcosOp); INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenAcosOp, chlo::AcosOp);
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenCoshOp, chlo::CoshOp);
INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenAtanOp, chlo::AtanOp); INSERT_UNARY_PROMOTE_TO_FP_PATTERN(AtenAtanOp, chlo::AtanOp);
#undef INSERT_UNARY_PROMOTE_TO_FP_PATTERN #undef INSERT_UNARY_PROMOTE_TO_FP_PATTERN

View File

@ -6332,6 +6332,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n" " %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n" " return %0 : !torch.list<int>\n"
" }\n" " }\n"
" func.func @\"__torch_mlir_shape_fn.aten.sinh\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.asin\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n" " func.func @\"__torch_mlir_shape_fn.aten.asin\"(%arg0: !torch.list<int>) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n" " %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n" " return %0 : !torch.list<int>\n"
@ -9699,6 +9703,11 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n" " %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
" return %1 : !torch.int\n" " return %1 : !torch.int\n"
" }\n" " }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.sinh\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"
" return %1 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.asin\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n" " func.func @\"__torch_mlir_dtype_fn.aten.asin\"(%arg0: !torch.tuple<int, int>) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n" " %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n" " %1 = call @__torch__._get_dtype_of_floating_point_op(%0#1) : (!torch.int) -> !torch.int\n"

View File

@ -636,8 +636,6 @@ FX_IMPORTER_STABLEHLO_XFAIL_SET = {
"ElementwiseBitwiseRightShiftInt32Module_basic", "ElementwiseBitwiseRightShiftInt32Module_basic",
"ElementwiseBitwiseRightShiftInt64Module_basic", "ElementwiseBitwiseRightShiftInt64Module_basic",
"ElementwiseBitwiseRightShiftInt8Module_basic", "ElementwiseBitwiseRightShiftInt8Module_basic",
"ElementwiseCoshIntModule_basic",
"ElementwiseCoshModule_basic",
"ElementwiseDequantizePerChannelModule_basic", "ElementwiseDequantizePerChannelModule_basic",
"ElementwiseDequantizePerTensorModule_basic", "ElementwiseDequantizePerTensorModule_basic",
"ElementwiseErfIntModule_basic", "ElementwiseErfIntModule_basic",
@ -1465,6 +1463,10 @@ STABLEHLO_PASS_SET = {
"ElementwiseSinIntModule_basic", "ElementwiseSinIntModule_basic",
"ElementwiseSqrtIntModule_basic", "ElementwiseSqrtIntModule_basic",
"ElementwiseUnaryIntModule_basic", "ElementwiseUnaryIntModule_basic",
"ElementwiseCoshIntModule_basic",
"ElementwiseCoshModule_basic",
"ElementwiseSinhIntModule_basic",
"ElementwiseSinhModule_basic",
} }
STABLEHLO_CRASHING_SET = { STABLEHLO_CRASHING_SET = {
@ -2326,6 +2328,8 @@ ONNX_XFAIL_SET = {
"ElementwiseBitwiseRightShiftInt8Module_basic", "ElementwiseBitwiseRightShiftInt8Module_basic",
"ElementwiseBitwiseXorModule_basic", "ElementwiseBitwiseXorModule_basic",
"ElementwiseBitwiseXorStaticShapeModule_basic", "ElementwiseBitwiseXorStaticShapeModule_basic",
"ElementwiseSinhIntModule_basic",
"ElementwiseSinhModule_basic",
"ElementwiseCoshIntModule_basic", "ElementwiseCoshIntModule_basic",
"ElementwiseCoshModule_basic", "ElementwiseCoshModule_basic",
"ElementwiseDequantizePerChannelModule_basic", "ElementwiseDequantizePerChannelModule_basic",

View File

@ -121,6 +121,9 @@ def atenfake_quantize_per_tensor_affine〡shape(self: List[int], scale: float
def atensin〡shape(self: List[int]) -> List[int]: def atensin〡shape(self: List[int]) -> List[int]:
return upstream_shape_functions.unary(self) return upstream_shape_functions.unary(self)
def atensinh〡shape(self: List[int]) -> List[int]:
return upstream_shape_functions.unary(self)
def atenasin〡shape(self: List[int]) -> List[int]: def atenasin〡shape(self: List[int]) -> List[int]:
return upstream_shape_functions.unary(self) return upstream_shape_functions.unary(self)
@ -2014,6 +2017,11 @@ def atensin〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
self_rank, self_dtype = self_rank_dtype self_rank, self_dtype = self_rank_dtype
return _get_dtype_of_floating_point_op(self_dtype) return _get_dtype_of_floating_point_op(self_dtype)
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
def atensinh〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
self_rank, self_dtype = self_rank_dtype
return _get_dtype_of_floating_point_op(self_dtype)
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1)) @check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1))
def atenasin〡dtype(self_rank_dtype: Tuple[int, int]) -> int: def atenasin〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
self_rank, self_dtype = self_rank_dtype self_rank, self_dtype = self_rank_dtype

View File

@ -63,6 +63,50 @@ def ElementwiseUnaryIntModule_basic(module, tu: TestUtils):
# ============================================================================== # ==============================================================================
class ElementwiseSinhModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.sinh(a)
@register_test_case(module_factory=lambda: ElementwiseSinhModule())
def ElementwiseSinhModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseSinhIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.int32, True),
])
def forward(self, a):
return torch.sinh(a)
@register_test_case(module_factory=lambda: ElementwiseSinhIntModule())
def ElementwiseSinhIntModule_basic(module, tu: TestUtils):
module.forward(tu.randint(3, 4, low=1, high=10).to(torch.int32))
# ==============================================================================
class ElementwiseCoshModule(torch.nn.Module): class ElementwiseCoshModule(torch.nn.Module):
def __init__(self): def __init__(self):