mirror of https://github.com/llvm/torch-mlir
[Torch] support float_power and threshold ops (#3854)
parent
2f33f31724
commit
dda65b196d
|
@ -5242,6 +5242,30 @@ def Torch_AtenPowScalarOp : Torch_Op<"aten.pow.Scalar", [
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_AtenFloatPowerTensorTensorOp : Torch_Op<"aten.float_power.Tensor_Tensor", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics,
|
||||||
|
ReadOnly
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::float_power.Tensor_Tensor : (Tensor, Tensor) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self,
|
||||||
|
AnyTorchTensorType:$exponent
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchOptionalTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenFloatPowerTensorTensorOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 2, 1);
|
||||||
|
}
|
||||||
|
void AtenFloatPowerTensorTensorOp::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 2, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_AtenThresholdBackwardOp : Torch_Op<"aten.threshold_backward", [
|
def Torch_AtenThresholdBackwardOp : Torch_Op<"aten.threshold_backward", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics,
|
HasValueSemantics,
|
||||||
|
|
|
@ -10439,6 +10439,63 @@ public:
|
||||||
};
|
};
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
class DecomposeAtenThresholdOp : public OpRewritePattern<AtenThresholdOp> {
|
||||||
|
public:
|
||||||
|
using OpRewritePattern<AtenThresholdOp>::OpRewritePattern;
|
||||||
|
LogicalResult matchAndRewrite(AtenThresholdOp op,
|
||||||
|
PatternRewriter &rewriter) const override {
|
||||||
|
Location loc = op.getLoc();
|
||||||
|
Value self = op.getSelf();
|
||||||
|
auto selfType = dyn_cast<BaseTensorType>(self.getType());
|
||||||
|
if (!selfType || !selfType.hasSizes()) {
|
||||||
|
return rewriter.notifyMatchFailure(op,
|
||||||
|
"requires input is tensor with sizes");
|
||||||
|
}
|
||||||
|
|
||||||
|
Value threshold = op.getThreshold();
|
||||||
|
Value value = op.getValue();
|
||||||
|
|
||||||
|
auto comOp = rewriter.create<AtenGtScalarOp>(
|
||||||
|
loc,
|
||||||
|
selfType.getWithSizesAndDtype(selfType.getSizes(),
|
||||||
|
rewriter.getI1Type()),
|
||||||
|
self, threshold);
|
||||||
|
|
||||||
|
rewriter.replaceOpWithNewOp<AtenWhereScalarOtherOp>(op, op.getType(), comOp,
|
||||||
|
self, value);
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
class DecomposeAtenFloatPowerTensorTensorOp
|
||||||
|
: public OpRewritePattern<AtenFloatPowerTensorTensorOp> {
|
||||||
|
public:
|
||||||
|
using OpRewritePattern<AtenFloatPowerTensorTensorOp>::OpRewritePattern;
|
||||||
|
LogicalResult matchAndRewrite(AtenFloatPowerTensorTensorOp op,
|
||||||
|
PatternRewriter &rewriter) const override {
|
||||||
|
Location loc = op.getLoc();
|
||||||
|
Value self = op.getSelf();
|
||||||
|
Value exp = op.getExponent();
|
||||||
|
|
||||||
|
auto selfTy = dyn_cast<BaseTensorType>(self.getType());
|
||||||
|
if (!selfTy || !selfTy.hasDtype() || !selfTy.hasSizes()) {
|
||||||
|
return rewriter.notifyMatchFailure(
|
||||||
|
op, "requires input is tensor with dtype and sizes");
|
||||||
|
}
|
||||||
|
|
||||||
|
Value selfF64 =
|
||||||
|
convertTensorToDtype(rewriter, loc, self, rewriter.getF64Type());
|
||||||
|
rewriter.replaceOpWithNewOp<AtenPowTensorTensorOp>(op, op.getType(),
|
||||||
|
selfF64, exp);
|
||||||
|
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
class DecomposeComplexOpsPass
|
class DecomposeComplexOpsPass
|
||||||
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
|
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
|
||||||
|
@ -10711,6 +10768,9 @@ public:
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenConv1dOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenConv1dOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenConv2dOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenConv2dOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenConv3dOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenConv3dOp>(patterns);
|
||||||
|
addPatternIfTargetOpIsIllegal<DecomposeAtenThresholdOp>(patterns);
|
||||||
|
addPatternIfTargetOpIsIllegal<DecomposeAtenFloatPowerTensorTensorOp>(
|
||||||
|
patterns);
|
||||||
|
|
||||||
addPatternIfTargetOpIsIllegal<
|
addPatternIfTargetOpIsIllegal<
|
||||||
DecomposeAtenFMaxMinOp<AtenFmaxOp, AtenMaximumOp>>(patterns);
|
DecomposeAtenFMaxMinOp<AtenFmaxOp, AtenMaximumOp>>(patterns);
|
||||||
|
|
|
@ -886,13 +886,6 @@ FX_IMPORTER_STABLEHLO_XFAIL_SET = {
|
||||||
"TensorToFloatZeroRank_basic",
|
"TensorToFloatZeroRank_basic",
|
||||||
"TensorToFloat_basic",
|
"TensorToFloat_basic",
|
||||||
"TensorToInt_basic",
|
"TensorToInt_basic",
|
||||||
"Threshold1dFloatModule_basic",
|
|
||||||
"Threshold1dIntI32Module_basic",
|
|
||||||
"Threshold1dIntModule_basic",
|
|
||||||
"Threshold2dFloatModule_basic",
|
|
||||||
"Threshold2dIntModule_basic",
|
|
||||||
"Threshold3dFloatModule_basic",
|
|
||||||
"Threshold3dIntModule_basic",
|
|
||||||
"ThresholdBackward1dFloatModule_basic",
|
"ThresholdBackward1dFloatModule_basic",
|
||||||
"ThresholdBackward1dIntModule_basic",
|
"ThresholdBackward1dIntModule_basic",
|
||||||
"ThresholdBackward1dMixedModule_basic",
|
"ThresholdBackward1dMixedModule_basic",
|
||||||
|
@ -2717,6 +2710,7 @@ ONNX_XFAIL_SET = {
|
||||||
"ElementwiseFminModule_basic",
|
"ElementwiseFminModule_basic",
|
||||||
"ElementwiseFmaxModule_basic",
|
"ElementwiseFmaxModule_basic",
|
||||||
"Exp2StaticModule_basic",
|
"Exp2StaticModule_basic",
|
||||||
|
"FloatPowerTensorTensorStaticModule_basic",
|
||||||
"MultinomialModule2D_basic",
|
"MultinomialModule2D_basic",
|
||||||
"MultinomialModule2D_F32",
|
"MultinomialModule2D_F32",
|
||||||
"PixelShuffleModuleStaticRank4Float32_basic",
|
"PixelShuffleModuleStaticRank4Float32_basic",
|
||||||
|
@ -2727,6 +2721,7 @@ ONNX_XFAIL_SET = {
|
||||||
"SliceStaticComplexInputModule_basic",
|
"SliceStaticComplexInputModule_basic",
|
||||||
"StdCorrectionLargeInputModule_basic",
|
"StdCorrectionLargeInputModule_basic",
|
||||||
"TupleModule_basic",
|
"TupleModule_basic",
|
||||||
|
"ThresholdStaticModule_basic",
|
||||||
"VarCorrectionLargeInputModule_basic",
|
"VarCorrectionLargeInputModule_basic",
|
||||||
# Failure - incorrect shape
|
# Failure - incorrect shape
|
||||||
"ArangeStartOutDtypeModule_basic",
|
"ArangeStartOutDtypeModule_basic",
|
||||||
|
|
|
@ -499,6 +499,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
||||||
emit("aten::pow.Tensor_Scalar : (Tensor, Scalar) -> (Tensor)")
|
emit("aten::pow.Tensor_Scalar : (Tensor, Scalar) -> (Tensor)")
|
||||||
emit("aten::pow.Tensor_Tensor : (Tensor, Tensor) -> (Tensor)")
|
emit("aten::pow.Tensor_Tensor : (Tensor, Tensor) -> (Tensor)")
|
||||||
emit("aten::pow.Scalar : (Scalar, Tensor) -> (Tensor)")
|
emit("aten::pow.Scalar : (Scalar, Tensor) -> (Tensor)")
|
||||||
|
emit("aten::float_power.Tensor_Tensor : (Tensor, Tensor) -> (Tensor)")
|
||||||
emit("aten::threshold_backward : (Tensor, Tensor, Scalar) -> (Tensor)")
|
emit("aten::threshold_backward : (Tensor, Tensor, Scalar) -> (Tensor)")
|
||||||
emit("aten::floor_divide : (Tensor, Tensor) -> (Tensor)")
|
emit("aten::floor_divide : (Tensor, Tensor) -> (Tensor)")
|
||||||
emit("aten::softplus : (Tensor, Scalar, Scalar) -> (Tensor)")
|
emit("aten::softplus : (Tensor, Scalar, Scalar) -> (Tensor)")
|
||||||
|
|
|
@ -491,6 +491,29 @@ def ElementwiseWhereSelfModule_basic(module, tu: TestUtils):
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class FloatPowerTensorTensorStaticModule(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args(
|
||||||
|
[
|
||||||
|
None,
|
||||||
|
([3, 4], torch.float32, True),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.ops.aten.float_power(x, torch.tensor(2))
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: FloatPowerTensorTensorStaticModule())
|
||||||
|
def FloatPowerTensorTensorStaticModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 4))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
class ElementwiseWhereScalarModule(torch.nn.Module):
|
class ElementwiseWhereScalarModule(torch.nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
Loading…
Reference in New Issue