mirror of https://github.com/llvm/torch-mlir
[Torch] fix aten.linear's decomposition (#3391)
* support aten.linear with more rank.pull/3392/head
parent
05929f9171
commit
e0a5adb1db
|
@ -5513,39 +5513,58 @@ public:
|
|||
Value bias = op.getBias();
|
||||
|
||||
BaseTensorType inputType = cast<BaseTensorType>(input.getType());
|
||||
if (!inputType.hasSizes() || inputType.getSizes().size() < 2)
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "expected input to be rank 2 or greater");
|
||||
if (!inputType.hasSizes())
|
||||
return rewriter.notifyMatchFailure(op, "expected input to have sizes");
|
||||
|
||||
BaseTensorType weightType = cast<BaseTensorType>(weight.getType());
|
||||
// `weight` must be a rank 2 matrix.
|
||||
if (!weightType.hasSizes() || weightType.getSizes().size() != 2)
|
||||
return rewriter.notifyMatchFailure(op, "expected weight to be a rank 2");
|
||||
if (!weightType.hasSizes())
|
||||
return rewriter.notifyMatchFailure(op, "expected weight to have sizes");
|
||||
|
||||
auto transposeWeight = [&]() -> Value {
|
||||
SmallVector<int64_t> transposeShape =
|
||||
llvm::to_vector(llvm::reverse(weightType.getSizes()));
|
||||
Type transposeType = weightType.getWithSizesAndDtype(
|
||||
llvm::ArrayRef(transposeShape), weightType.getOptionalDtype());
|
||||
Value transposeWeight =
|
||||
rewriter.create<AtenTOp>(loc, transposeType, weight);
|
||||
return transposeWeight;
|
||||
};
|
||||
|
||||
Value matmul = rewriter.create<AtenMatmulOp>(loc, op.getType(), input,
|
||||
transposeWeight);
|
||||
if (bias.getType().isa<Torch::NoneType>()) {
|
||||
rewriter.replaceOp(op, matmul);
|
||||
auto weightRank = weightType.getSizes().size();
|
||||
if (weightRank > 2 || weightRank <= 0)
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "expected weight's rank <= 2 && >= 1");
|
||||
if (weightRank == 1) {
|
||||
rewriter.replaceOpWithNewOp<AtenMatmulOp>(op, op.getType(), input,
|
||||
weight);
|
||||
return success();
|
||||
} else if (weightRank == 2) {
|
||||
rewriter.replaceOpWithNewOp<AtenMatmulOp>(op, op.getType(), input,
|
||||
transposeWeight());
|
||||
return success();
|
||||
}
|
||||
|
||||
llvm_unreachable("unsupported weightRank");
|
||||
} else {
|
||||
BaseTensorType biasType = cast<BaseTensorType>(bias.getType());
|
||||
if (!biasType.hasSizes() || biasType.getSizes().size() != 1)
|
||||
return rewriter.notifyMatchFailure(op, "expected bias to be rank 1");
|
||||
|
||||
// `weight` must be a rank 2 matrix.
|
||||
auto weightRank = weightType.getSizes().size();
|
||||
if (weightRank != 2)
|
||||
return rewriter.notifyMatchFailure(op,
|
||||
"expected weight to be a rank 2");
|
||||
|
||||
Value matmul = rewriter.create<AtenMatmulOp>(loc, op.getType(), input,
|
||||
transposeWeight());
|
||||
Value alpha =
|
||||
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1));
|
||||
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
|
||||
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(op, op.getType(), matmul,
|
||||
op.getBias(), alpha);
|
||||
return success();
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
|
|
|
@ -814,6 +814,12 @@ FX_IMPORTER_STABLEHLO_CRASHING_SET = {
|
|||
}
|
||||
|
||||
STABLEHLO_PASS_SET = {
|
||||
"AtenLinear1D_basic",
|
||||
"AtenLinear2D_basic",
|
||||
"AtenLinear3DBias_basic",
|
||||
"AtenLinearMatVec_basic",
|
||||
"AtenLinearVecMatBias_basic",
|
||||
"AtenLinearVecMat_basic",
|
||||
"ReduceAminSingleDim_basic",
|
||||
"AtenDotModule_basic",
|
||||
"AdaptiveAvgPool1dNonUnitOutputSizeStaticModule_basic",
|
||||
|
@ -1447,6 +1453,8 @@ STABLEHLO_CRASHING_SET = set()
|
|||
# Write the TOSA set as a "passing" set as it is very early in development
|
||||
# and very few tests work yet.
|
||||
TOSA_PASS_SET = {
|
||||
"AtenLinear2D_basic",
|
||||
"AtenLinear3DBias_basic",
|
||||
"ElementwiseAddScalar_NumToTensorFloat_Module_basic",
|
||||
"ElementwiseDivTensorFloatModule_basic",
|
||||
"ElementwiseMulTensorFloatModule_basic",
|
||||
|
@ -1911,6 +1919,9 @@ MAKE_FX_TOSA_PASS_SET = (
|
|||
TOSA_PASS_SET
|
||||
| {
|
||||
### Tests additionally passing in make_fx_tosa
|
||||
"AtenLinear1D_basic",
|
||||
"AtenLinearMatVec_basic",
|
||||
"AtenLinearVecMatBias_basic",
|
||||
"MaxPool1dEmptyStrideStaticModule_basic",
|
||||
"MaxPool1dStaticCeilModeTrueModule_basic",
|
||||
"MaxPool1dStaticModule_basic",
|
||||
|
|
|
@ -622,6 +622,131 @@ def AtenMatmulQMixedSigni8Transpose_basic(module, tu: TestUtils):
|
|||
# ==============================================================================
|
||||
|
||||
|
||||
class AtenLinear1D(torch.nn.Module):
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([3], torch.float32, True),
|
||||
([3], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a, b):
|
||||
return torch.ops.aten.linear(a, b)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenLinear1D())
|
||||
def AtenLinear1D_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3), tu.rand(3))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class AtenLinearMatVec(torch.nn.Module):
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([3, 4], torch.float32, True),
|
||||
([4], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a, b):
|
||||
return torch.ops.aten.linear(a, b)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenLinearMatVec())
|
||||
def AtenLinearMatVec_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4), tu.rand(4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class AtenLinearVecMat(torch.nn.Module):
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([4], torch.float32, True),
|
||||
([3, 4], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a, b):
|
||||
return torch.ops.aten.linear(a, b)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenLinearVecMat())
|
||||
def AtenLinearVecMat_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(4), tu.rand(3, 4))
|
||||
|
||||
|
||||
class AtenLinearVecMatBias(torch.nn.Module):
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([4], torch.float32, True),
|
||||
([3, 4], torch.float32, True),
|
||||
([3], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a, b, c):
|
||||
return torch.ops.aten.linear(a, b, c)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenLinearVecMatBias())
|
||||
def AtenLinearVecMatBias_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(4), tu.rand(3, 4), tu.rand(3))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class AtenLinear2D(torch.nn.Module):
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([3, 4], torch.float32, True),
|
||||
([5, 4], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a, b):
|
||||
return torch.ops.aten.linear(a, b)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenLinear2D())
|
||||
def AtenLinear2D_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 4), tu.rand(5, 4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class AtenLinear3DBias(torch.nn.Module):
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([3, 6, 4], torch.float32, True),
|
||||
([5, 4], torch.float32, True),
|
||||
([5], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, a, b, c):
|
||||
return torch.ops.aten.linear(a, b, c)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: AtenLinear3DBias())
|
||||
def AtenLinear3DBias_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 6, 4), tu.rand(5, 4), tu.rand(5))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class AtenLinalgCrossInt(torch.nn.Module):
|
||||
@export
|
||||
@annotate_args(
|
||||
|
|
Loading…
Reference in New Issue