mirror of https://github.com/llvm/torch-mlir
parent
b0f39ac966
commit
e7282487ea
|
@ -963,6 +963,7 @@ TOSA_PASS_SET = {
|
||||||
"ElementwiseMaximumIntModule_basic",
|
"ElementwiseMaximumIntModule_basic",
|
||||||
"ElementwiseMaxOtherIntModule_basic",
|
"ElementwiseMaxOtherIntModule_basic",
|
||||||
"ElementwiseMaxOtherModule_basic",
|
"ElementwiseMaxOtherModule_basic",
|
||||||
|
"GluStaticModule_basic",
|
||||||
"ViewDoubleMergeStaticModule_basic",
|
"ViewDoubleMergeStaticModule_basic",
|
||||||
"ViewCollapseOnesMiddleModule_basic",
|
"ViewCollapseOnesMiddleModule_basic",
|
||||||
"ViewFiveTestStaticModule_basic",
|
"ViewFiveTestStaticModule_basic",
|
||||||
|
|
|
@ -4189,6 +4189,30 @@ def Torch_AtenIscloseOp : Torch_Op<"aten.isclose", [
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_AtenGluOp : Torch_Op<"aten.glu", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics,
|
||||||
|
ReadOnly
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::glu : (Tensor, int) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self,
|
||||||
|
Torch_IntType:$dim
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenGluOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 2, 1);
|
||||||
|
}
|
||||||
|
void AtenGluOp::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 2, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_AtenUnbindCopyIntOp : Torch_Op<"aten.unbind_copy.int", [
|
def Torch_AtenUnbindCopyIntOp : Torch_Op<"aten.unbind_copy.int", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics,
|
HasValueSemantics,
|
||||||
|
|
|
@ -6382,6 +6382,39 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_shape_fn.aten.glu\"(%arg0: !torch.list<int>, %arg1: !torch.int) -> !torch.list<int> {\n"
|
||||||
|
" %none = torch.constant.none\n"
|
||||||
|
" %str = torch.constant.str \"AssertionError: glu's dim size must be multiply of 2\"\n"
|
||||||
|
" %int0 = torch.constant.int 0\n"
|
||||||
|
" %int2 = torch.constant.int 2\n"
|
||||||
|
" %int1 = torch.constant.int 1\n"
|
||||||
|
" %0 = torch.aten.lt.int %arg1, %int0 : !torch.int, !torch.int -> !torch.bool\n"
|
||||||
|
" %1 = torch.prim.If %0 -> (!torch.int) {\n"
|
||||||
|
" %13 = torch.aten.len.t %arg0 : !torch.list<int> -> !torch.int\n"
|
||||||
|
" %14 = torch.aten.add.int %arg1, %13 : !torch.int, !torch.int -> !torch.int\n"
|
||||||
|
" torch.prim.If.yield %14 : !torch.int\n"
|
||||||
|
" } else {\n"
|
||||||
|
" torch.prim.If.yield %arg1 : !torch.int\n"
|
||||||
|
" }\n"
|
||||||
|
" %2 = torch.aten.__getitem__.t %arg0, %1 : !torch.list<int>, !torch.int -> !torch.int\n"
|
||||||
|
" %3 = torch.aten.remainder.int %2, %int2 : !torch.int, !torch.int -> !torch.int\n"
|
||||||
|
" %4 = torch.aten.eq.int %3, %int0 : !torch.int, !torch.int -> !torch.bool\n"
|
||||||
|
" torch.prim.If %4 -> () {\n"
|
||||||
|
" torch.prim.If.yield\n"
|
||||||
|
" } else {\n"
|
||||||
|
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
|
||||||
|
" torch.prim.If.yield\n"
|
||||||
|
" }\n"
|
||||||
|
" %5 = torch.aten.slice.t %arg0, %none, %1, %int1 : !torch.list<int>, !torch.none, !torch.int, !torch.int -> !torch.list<int>\n"
|
||||||
|
" %6 = torch.aten.__getitem__.t %arg0, %1 : !torch.list<int>, !torch.int -> !torch.int\n"
|
||||||
|
" %7 = torch.aten.floordiv.int %6, %int2 : !torch.int, !torch.int -> !torch.int\n"
|
||||||
|
" %8 = torch.prim.ListConstruct %7 : (!torch.int) -> !torch.list<int>\n"
|
||||||
|
" %9 = torch.aten.add.t %5, %8 : !torch.list<int>, !torch.list<int> -> !torch.list<int>\n"
|
||||||
|
" %10 = torch.aten.add.int %1, %int1 : !torch.int, !torch.int -> !torch.int\n"
|
||||||
|
" %11 = torch.aten.slice.t %arg0, %10, %none, %int1 : !torch.list<int>, !torch.int, !torch.none, !torch.int -> !torch.list<int>\n"
|
||||||
|
" %12 = torch.aten.add.t %9, %11 : !torch.list<int>, !torch.list<int> -> !torch.list<int>\n"
|
||||||
|
" return %12 : !torch.list<int>\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_shape_fn.aten._softmax\"(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.bool) -> !torch.list<int> {\n"
|
" func.func @\"__torch_mlir_shape_fn.aten._softmax\"(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.bool) -> !torch.list<int> {\n"
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
|
@ -8863,6 +8896,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
" return %0#1 : !torch.int\n"
|
" return %0#1 : !torch.int\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_dtype_fn.aten.glu\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.int) -> !torch.int {\n"
|
||||||
|
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
|
" return %0#1 : !torch.int\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_dtype_fn.aten.scatter_reduce.two\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.int, %arg2: !torch.tuple<int, int>, %arg3: !torch.tuple<int, int>, %arg4: !torch.str, %arg5: !torch.bool) -> !torch.int {\n"
|
" func.func @\"__torch_mlir_dtype_fn.aten.scatter_reduce.two\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.int, %arg2: !torch.tuple<int, int>, %arg3: !torch.tuple<int, int>, %arg4: !torch.str, %arg5: !torch.bool) -> !torch.int {\n"
|
||||||
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
" return %0#1 : !torch.int\n"
|
" return %0#1 : !torch.int\n"
|
||||||
|
|
|
@ -361,6 +361,48 @@ public:
|
||||||
};
|
};
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
class DecomposeAtenGluOp : public OpRewritePattern<AtenGluOp> {
|
||||||
|
public:
|
||||||
|
using OpRewritePattern::OpRewritePattern;
|
||||||
|
LogicalResult matchAndRewrite(AtenGluOp op,
|
||||||
|
PatternRewriter &rewriter) const override {
|
||||||
|
Location loc = op.getLoc();
|
||||||
|
Value self = op.getSelf();
|
||||||
|
Value dim = op.getDim();
|
||||||
|
|
||||||
|
auto outputTy = op.getType().dyn_cast<Torch::ValueTensorType>();
|
||||||
|
if (!outputTy || !outputTy.hasSizes() || !outputTy.hasDtype()) {
|
||||||
|
return rewriter.notifyMatchFailure(
|
||||||
|
op, "Expected output type having sizes and dtype");
|
||||||
|
}
|
||||||
|
|
||||||
|
Value zero =
|
||||||
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
|
||||||
|
Value dimSize = rewriter.create<AtenSizeIntOp>(loc, self, dim);
|
||||||
|
Value two =
|
||||||
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(2));
|
||||||
|
|
||||||
|
Value remainder = rewriter.create<AtenRemainderIntOp>(loc, dimSize, two);
|
||||||
|
Value eqOrNot = rewriter.create<AtenEqIntOp>(loc, remainder, zero);
|
||||||
|
rewriter.create<RuntimeAssertOp>(
|
||||||
|
loc, eqOrNot,
|
||||||
|
rewriter.getStringAttr("AtenGluOp's dim size must be multiply of 2"));
|
||||||
|
|
||||||
|
Value splitLength = rewriter.create<AtenFloordivIntOp>(loc, dimSize, two);
|
||||||
|
Value a = rewriter.create<AtenNarrowOp>(loc, outputTy, self, dim, zero,
|
||||||
|
splitLength);
|
||||||
|
Value b = rewriter.create<AtenNarrowOp>(loc, outputTy, self, dim,
|
||||||
|
splitLength, splitLength);
|
||||||
|
// a⊗σ(b)
|
||||||
|
Value sigmoidB = rewriter.create<AtenSigmoidOp>(loc, outputTy, b);
|
||||||
|
Value result = rewriter.create<AtenMulTensorOp>(loc, outputTy, a, sigmoidB);
|
||||||
|
rewriter.replaceOp(op, result);
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
class DecomposeAtenZeroOp
|
class DecomposeAtenZeroOp
|
||||||
: public OpRewritePattern<AtenZeroOp> {
|
: public OpRewritePattern<AtenZeroOp> {
|
||||||
|
@ -5289,6 +5331,7 @@ public:
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenStdCorrectionOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenStdCorrectionOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenNarrowOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenNarrowOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenNarrowTensorOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenNarrowTensorOp>(patterns);
|
||||||
|
addPatternIfTargetOpIsIllegal<DecomposeAtenGluOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAten_EmbeddingBagOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAten_EmbeddingBagOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLiftFreshCopyOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenLiftFreshCopyOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenMseLossOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenMseLossOp>(patterns);
|
||||||
|
|
|
@ -427,6 +427,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
||||||
target.addIllegalOp<AtenHardsigmoidOp>();
|
target.addIllegalOp<AtenHardsigmoidOp>();
|
||||||
target.addIllegalOp<AtenRelu6Op>();
|
target.addIllegalOp<AtenRelu6Op>();
|
||||||
target.addIllegalOp<AtenEluOp>();
|
target.addIllegalOp<AtenEluOp>();
|
||||||
|
target.addIllegalOp<AtenGluOp>();
|
||||||
target.addIllegalOp<AtenHardswishOp>();
|
target.addIllegalOp<AtenHardswishOp>();
|
||||||
target.addIllegalOp<AtenSoftplusOp>();
|
target.addIllegalOp<AtenSoftplusOp>();
|
||||||
target.addIllegalOp<AtenSiluOp>();
|
target.addIllegalOp<AtenSiluOp>();
|
||||||
|
|
|
@ -167,6 +167,12 @@ def aten〇relu6〡shape(self: List[int]) -> List[int]:
|
||||||
def aten〇round〡shape(self: List[int]) -> List[int]:
|
def aten〇round〡shape(self: List[int]) -> List[int]:
|
||||||
return upstream_shape_functions.unary(self)
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
|
def aten〇glu〡shape(self: List[int], dim: int = -1) -> List[int]:
|
||||||
|
if dim < 0:
|
||||||
|
dim += len(self)
|
||||||
|
assert self[dim] % 2 == 0, "glu's dim size must be multiply of 2"
|
||||||
|
return self[:dim] + [self[dim] // 2] + self[dim+1:]
|
||||||
|
|
||||||
def aten〇_softmax〡shape(self: List[int], dim: int, half_to_float: bool) -> List[int]:
|
def aten〇_softmax〡shape(self: List[int], dim: int, half_to_float: bool) -> List[int]:
|
||||||
return upstream_shape_functions.unary(self)
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
|
@ -1932,6 +1938,11 @@ def aten〇round〡dtype(self_rank_dtype: Tuple[int, int]) -> int:
|
||||||
self_rank, self_dtype = self_rank_dtype
|
self_rank, self_dtype = self_rank_dtype
|
||||||
return self_dtype
|
return self_dtype
|
||||||
|
|
||||||
|
@check_dtype_function(_check_tensors_with_the_same_dtype(tensor_shapes=[(100,)], dim=0))
|
||||||
|
def aten〇glu〡dtype(self_rank_dtype: Tuple[int, int], dim: int = -1) -> int:
|
||||||
|
self_rank, self_dtype = self_rank_dtype
|
||||||
|
return self_dtype
|
||||||
|
|
||||||
@check_dtype_function(
|
@check_dtype_function(
|
||||||
[Invocation(TensorOfShape(3, dtype=dtype), 0, TensorOfShape(3, dtype=torch.int64), TensorOfShape(3, dtype=dtype), "sum") for dtype in _SORTED_TORCH_TYPES])
|
[Invocation(TensorOfShape(3, dtype=dtype), 0, TensorOfShape(3, dtype=torch.int64), TensorOfShape(3, dtype=dtype), "sum") for dtype in _SORTED_TORCH_TYPES])
|
||||||
def aten〇scatter_reduce〇two〡dtype(self_rank_dtype: Tuple[int, int], dim: int, index_rank_dtype: Tuple[int, int], src_rank_dtype: Tuple[int, int], reduce: str, include_self: bool = True) -> int:
|
def aten〇scatter_reduce〇two〡dtype(self_rank_dtype: Tuple[int, int], dim: int, index_rank_dtype: Tuple[int, int], src_rank_dtype: Tuple[int, int], reduce: str, include_self: bool = True) -> int:
|
||||||
|
|
|
@ -354,6 +354,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
||||||
emit("aten::view_as_complex : (Tensor) -> (Tensor)")
|
emit("aten::view_as_complex : (Tensor) -> (Tensor)")
|
||||||
emit("aten::view_as_real : (Tensor) -> (Tensor)")
|
emit("aten::view_as_real : (Tensor) -> (Tensor)")
|
||||||
emit("aten::isclose : (Tensor, Tensor, float, float, bool) -> (Tensor)")
|
emit("aten::isclose : (Tensor, Tensor, float, float, bool) -> (Tensor)")
|
||||||
|
emit("aten::glu : (Tensor, int) -> (Tensor)")
|
||||||
|
|
||||||
# Ops with dynamic number of outputs
|
# Ops with dynamic number of outputs
|
||||||
emit("aten::unbind_copy.int : (Tensor, int) -> (Tensor[])")
|
emit("aten::unbind_copy.int : (Tensor, int) -> (Tensor[])")
|
||||||
|
|
|
@ -3685,3 +3685,21 @@ class ElementwiseBitwiseAndScalarInt8Module(torch.nn.Module):
|
||||||
@register_test_case(module_factory=lambda: ElementwiseBitwiseAndScalarInt8Module())
|
@register_test_case(module_factory=lambda: ElementwiseBitwiseAndScalarInt8Module())
|
||||||
def ElementwiseBitwiseAndScalarInt8Module_basic(module, tu: TestUtils):
|
def ElementwiseBitwiseAndScalarInt8Module_basic(module, tu: TestUtils):
|
||||||
module.forward(tu.randint(3, 4, low=-1000, high=1000).to(torch.int8))
|
module.forward(tu.randint(3, 4, low=-1000, high=1000).to(torch.int8))
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
class GluStaticModule(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([3, 24, 5], torch.float32, True)
|
||||||
|
])
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.ops.aten.glu(x, dim=1)
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: GluStaticModule())
|
||||||
|
def GluStaticModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 24, 5))
|
||||||
|
|
Loading…
Reference in New Issue