mirror of https://github.com/llvm/torch-mlir
Misc fixes for MacOS. (#255)
* Change aligned_alloc -> malloc. It can fail (and does on MacOS) and is a bit over-aggressive optimization for a reference backend. * Fixed a fragile test that prints -0.0 on MacOS. * Fail the test (not the framework) on failure to trace (Torch on MacOS is missing features). * Fix .so -> .dylib for compiler runtime.pull/256/head
parent
2dbab50444
commit
ec611c1e6f
|
@ -227,9 +227,9 @@ def run_tests(tests: List[Test], config: TestConfig) -> List[TestResult]:
|
|||
"""Invoke the given `Test`'s with the provided `TestConfig`."""
|
||||
results = []
|
||||
for test in tests:
|
||||
golden_trace = _generate_golden_trace(test)
|
||||
# TODO: Precompile everything in parallel.
|
||||
try:
|
||||
golden_trace = _generate_golden_trace(test)
|
||||
compiled = config.compile(test.program_factory())
|
||||
except Exception as e:
|
||||
results.append(
|
||||
|
|
|
@ -488,7 +488,8 @@ RtValue refbackrt::createRtValueFromOutputArgInfo(const OutputArgInfo &info) {
|
|||
switch (info.elementType) {
|
||||
case ElementType::F32: {
|
||||
auto byteSize = numel * sizeof(float);
|
||||
data = static_cast<void *>(aligned_alloc(32, byteSize));
|
||||
data = static_cast<void *>(malloc(byteSize));
|
||||
assert(data && "could not allocate tensor");
|
||||
memset(data, 0, byteSize);
|
||||
return RtValue(Tensor::create(shape, ElementType::F32, data));
|
||||
break;
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
|
||||
import os
|
||||
import platform
|
||||
|
||||
_refjit = None
|
||||
|
||||
|
@ -40,7 +41,11 @@ def is_enabled() -> bool:
|
|||
def get_runtime_libs():
|
||||
# The _refjit_resources directory is at the npcomp.compiler level.
|
||||
resources_dir = os.path.join(os.path.dirname(__file__))
|
||||
return [os.path.join(resources_dir, "libNPCOMPCompilerRuntimeShlib.so")]
|
||||
suffix = ".so"
|
||||
if platform.system() == "Darwin":
|
||||
suffix = ".dylib"
|
||||
shlib_name = f"libNPCOMPCompilerRuntimeShlib{suffix}"
|
||||
return [os.path.join(resources_dir, shlib_name)]
|
||||
|
||||
|
||||
class JitModuleInvoker:
|
||||
|
|
|
@ -465,7 +465,7 @@ class ArrayParams:
|
|||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: ArrayParams(dtype=Unspec) is not concrete
|
||||
>>> ArrayParams(np.float32, (1, 2)).new_ndarray() * 0.0
|
||||
>>> (ArrayParams(np.float32, (1, 2)).new_ndarray() * 0.0 + 1.0) * 0.0
|
||||
array([[0., 0.]], dtype=float32)
|
||||
"""
|
||||
if not self.is_concrete:
|
||||
|
|
Loading…
Reference in New Issue