mirror of https://github.com/llvm/torch-mlir
[TORCH][MLIR] Add E2E support for `aten.eq` and `aten.lt` ops
- Added E2E support for `aten.eq.Tensor` and `aten.lt.Tensor` ops. Both the operands are expected to be of the same type, i.e., type promotion is not addressed as a part of this commit. - Added E2E support for `aten.eq.Scalar` and `aten.lt.Scalar` ops. Tensor operand type to Scalar operand type promotion has not been handled in this commit. Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>pull/477/head
parent
0cd95b5c68
commit
eddc09aa55
|
@ -419,6 +419,194 @@ def ElementwiseGtIntTensorModule_basic(module, tu: TestUtils):
|
|||
|
||||
# ==============================================================================
|
||||
|
||||
class ElementwiseLtFloatScalarModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, x):
|
||||
return torch.lt(x, 0.6)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseLtFloatScalarModule())
|
||||
def ElementwiseLtFloatScalarModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 5))
|
||||
|
||||
|
||||
class ElementwiseLtIntScalarModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.int64, True),
|
||||
])
|
||||
def forward(self, x):
|
||||
return torch.lt(x, 0)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseLtIntScalarModule())
|
||||
def ElementwiseLtIntScalarModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.randint(-10, 15, (3,4)))
|
||||
|
||||
|
||||
class ElementwiseLtDiffWidthScalarModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.int32, True),
|
||||
])
|
||||
def forward(self, x):
|
||||
return torch.lt(x, 2)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseLtDiffWidthScalarModule())
|
||||
def ElementwiseLtDiffWidthScalarModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.randint(-10, 15, (3,4)).to(torch.int32))
|
||||
|
||||
|
||||
class ElementwiseLtFloatTensorModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
([-1], torch.float32, True),
|
||||
])
|
||||
def forward(self, x, y):
|
||||
return torch.lt(x, y)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseLtFloatTensorModule())
|
||||
def ElementwiseLtFloatTensorModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 5), tu.rand(5))
|
||||
|
||||
|
||||
class ElementwiseLtIntTensorModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.int64, True),
|
||||
([-1], torch.int64, True),
|
||||
])
|
||||
def forward(self, x, y):
|
||||
return torch.lt(x, y)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseLtIntTensorModule())
|
||||
def ElementwiseLtIntTensorModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.randint(10, (3, 5)), torch.randint(10, (5,)))
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
class ElementwiseEqFloatScalarModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
])
|
||||
def forward(self, x):
|
||||
return torch.eq(x, 6.0)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseEqFloatScalarModule())
|
||||
def ElementwiseEqFloatScalarModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.tensor([[1.0, 2.2, 6.0], [6.0, 2.0, 3.1]])
|
||||
.to(torch.float32))
|
||||
|
||||
|
||||
class ElementwiseEqIntScalarModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.int64, True),
|
||||
])
|
||||
def forward(self, x):
|
||||
return torch.eq(x, 2)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseEqIntScalarModule())
|
||||
def ElementwiseEqIntScalarModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.randint(2, 4, (5,8)))
|
||||
|
||||
|
||||
class ElementwiseEqDiffWidthScalarModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.int32, True),
|
||||
])
|
||||
def forward(self, x):
|
||||
return torch.eq(x, 2)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseEqDiffWidthScalarModule())
|
||||
def ElementwiseEqDiffWidthScalarModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.randint(2, 4, (5,8)).to(torch.int32))
|
||||
|
||||
|
||||
class ElementwiseEqFloatTensorModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.float32, True),
|
||||
([-1], torch.float32, True),
|
||||
])
|
||||
def forward(self, x, y):
|
||||
return torch.eq(x, y)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseEqFloatTensorModule())
|
||||
def ElementwiseEqFloatTensorModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.tensor([[1.0, 2.2, 6.0], [6.0, 2.0, 3.1]])
|
||||
.to(torch.float32),
|
||||
torch.tensor([1.0, 2.4, 6.0]).to(torch.float32))
|
||||
|
||||
|
||||
class ElementwiseEqIntTensorModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([-1, -1], torch.int64, True),
|
||||
([-1], torch.int64, True),
|
||||
])
|
||||
def forward(self, x, y):
|
||||
return torch.eq(x, y)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseEqIntTensorModule())
|
||||
def ElementwiseEqIntTensorModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.randint(2, 4, (8, 5)), torch.randint(2, 4, (5,)))
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
class ElementwiseClampModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
|
|
|
@ -570,6 +570,36 @@ def Torch_AtenGt_TensorOp : Torch_Op<"aten.gt_.Tensor", [
|
|||
let assemblyFormat = "$self `,` $other attr-dict `:` type($self) `,` type($other) `->` type($result)";
|
||||
}
|
||||
|
||||
def Torch_AtenLtTensorOp : Torch_Op<"aten.lt.Tensor", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics
|
||||
]> {
|
||||
let summary = "Generated op for `aten::lt.Tensor : (Tensor, Tensor) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
AnyTorchTensorType:$other
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let assemblyFormat = "$self `,` $other attr-dict `:` type($self) `,` type($other) `->` type($result)";
|
||||
}
|
||||
|
||||
def Torch_AtenLt_TensorOp : Torch_Op<"aten.lt_.Tensor", [
|
||||
IsTrailingUnderscoreInplaceVariant,
|
||||
AllowsTypeRefinement
|
||||
]> {
|
||||
let summary = "Generated op for `aten::lt_.Tensor : (Tensor, Tensor) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
AnyTorchTensorType:$other
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let assemblyFormat = "$self `,` $other attr-dict `:` type($self) `,` type($other) `->` type($result)";
|
||||
}
|
||||
|
||||
def Torch_AtenNeTensorOp : Torch_Op<"aten.ne.Tensor", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics
|
||||
|
@ -844,6 +874,36 @@ def Torch_AtenGe_ScalarOp : Torch_Op<"aten.ge_.Scalar", [
|
|||
let assemblyFormat = "$self `,` $other attr-dict `:` type($self) `,` type($other) `->` type($result)";
|
||||
}
|
||||
|
||||
def Torch_AtenLtScalarOp : Torch_Op<"aten.lt.Scalar", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics
|
||||
]> {
|
||||
let summary = "Generated op for `aten::lt.Scalar : (Tensor, Scalar) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
AnyTorchScalarType:$other
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let assemblyFormat = "$self `,` $other attr-dict `:` type($self) `,` type($other) `->` type($result)";
|
||||
}
|
||||
|
||||
def Torch_AtenLt_ScalarOp : Torch_Op<"aten.lt_.Scalar", [
|
||||
IsTrailingUnderscoreInplaceVariant,
|
||||
AllowsTypeRefinement
|
||||
]> {
|
||||
let summary = "Generated op for `aten::lt_.Scalar : (Tensor, Scalar) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
AnyTorchScalarType:$other
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchTensorType:$result
|
||||
);
|
||||
let assemblyFormat = "$self `,` $other attr-dict `:` type($self) `,` type($other) `->` type($result)";
|
||||
}
|
||||
|
||||
def Torch_AtenFmodScalarOp : Torch_Op<"aten.fmod.Scalar", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics
|
||||
|
|
|
@ -1691,8 +1691,10 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
|
|||
|
||||
// TODO: Type promotion in case of different `lhsDtype` and `rhsDtype` needs
|
||||
// to be handled.
|
||||
if (lhsDtype != rhsDtype)
|
||||
if (lhsDtype != rhsDtype) {
|
||||
gtTensor.emitError("unimplemented: different lhs and rhs dtype");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
Type elementalType =
|
||||
gtTensor.self().getType().cast<BaseTensorType>().getDtype();
|
||||
|
@ -1709,6 +1711,61 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
|
|||
payloadArgs[0], payloadArgs[1]);
|
||||
}
|
||||
gtTensor.emitError("unimplemented: dtype isn't supported.");
|
||||
return nullptr;
|
||||
}
|
||||
if (auto eqTensor = dyn_cast<AtenEqTensorOp>(op)) {
|
||||
AtenEqTensorOp::Adaptor adaptor(operands);
|
||||
Type lhsDtype = payloadArgs[0].getType();
|
||||
Type rhsDtype = payloadArgs[1].getType();
|
||||
|
||||
// TODO: Type promotion in case of different `lhsDtype` and `rhsDtype` needs
|
||||
// to be handled.
|
||||
if (lhsDtype != rhsDtype) {
|
||||
eqTensor.emitError("unimplemented: lhs and rhs dtype must be same");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
Type elementalType =
|
||||
eqTensor.self().getType().cast<BaseTensorType>().getDtype();
|
||||
|
||||
if (elementalType.isa<mlir::FloatType>())
|
||||
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UEQ,
|
||||
payloadArgs[0], payloadArgs[1]);
|
||||
if (elementalType.isa<mlir::IntegerType>()) {
|
||||
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
||||
payloadArgs[0], payloadArgs[1]);
|
||||
}
|
||||
eqTensor.emitError("unimplemented: dtype isn't supported.");
|
||||
return nullptr;
|
||||
}
|
||||
if (auto ltTensor = dyn_cast<AtenLtTensorOp>(op)) {
|
||||
AtenLtTensorOp::Adaptor adaptor(operands);
|
||||
Type lhsDtype = payloadArgs[0].getType();
|
||||
Type rhsDtype = payloadArgs[1].getType();
|
||||
|
||||
// TODO: Type promotion in case of different `lhsDtype` and `rhsDtype` needs
|
||||
// to be handled.
|
||||
if (lhsDtype != rhsDtype) {
|
||||
ltTensor.emitError("unimplemented: lhs and rhs dtype must be same");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
Type elementalType =
|
||||
ltTensor.self().getType().cast<BaseTensorType>().getDtype();
|
||||
|
||||
if (elementalType.isa<mlir::FloatType>())
|
||||
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULT,
|
||||
payloadArgs[0], payloadArgs[1]);
|
||||
if (IntegerType intType = elementalType.dyn_cast<mlir::IntegerType>()) {
|
||||
if (intType.isUnsigned())
|
||||
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
|
||||
payloadArgs[0], payloadArgs[1]);
|
||||
if (intType.isSigned())
|
||||
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
|
||||
payloadArgs[0], payloadArgs[1]);
|
||||
}
|
||||
ltTensor.emitError("unimplemented: dtype isn't supported.");
|
||||
return nullptr;
|
||||
}
|
||||
if (auto div = dyn_cast<AtenDivTensorOp>(op)) {
|
||||
AtenDivTensorOp::Adaptor adaptor(operands);
|
||||
|
@ -1764,6 +1821,56 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
|
|||
return nullptr;
|
||||
}
|
||||
|
||||
if (auto eqScalar = dyn_cast<AtenEqScalarOp>(op)) {
|
||||
Type dtype = eqScalar.self().getType().cast<BaseTensorType>().getDtype();
|
||||
Value otherPromoted =
|
||||
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
|
||||
|
||||
if (dtype.isa<mlir::FloatType>())
|
||||
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UEQ,
|
||||
payloadArgs[0], otherPromoted);
|
||||
if (dtype.isa<mlir::IntegerType>()) {
|
||||
if (!operands[1].getType().isa<mlir::IntegerType>()) {
|
||||
// TODO: Promote tensor operand from integer to float.
|
||||
eqScalar.emitError(
|
||||
"unimplemented: type promotion from tensor to scalar");
|
||||
return nullptr;
|
||||
}
|
||||
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
||||
payloadArgs[0], otherPromoted);
|
||||
}
|
||||
eqScalar.emitError("unimplemented: dtype isn't supported");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (auto ltScalar = dyn_cast<AtenLtScalarOp>(op)) {
|
||||
Type dtype = ltScalar.self().getType().cast<BaseTensorType>().getDtype();
|
||||
Value otherPromoted =
|
||||
convertScalarToDtype(b, loc, operands[1], payloadArgs[0].getType());
|
||||
|
||||
// TODO: Both tensor and scalar variants of `aten.gt` and `aten.lt` share a
|
||||
// lot of code that can be refactored.
|
||||
if (dtype.isa<mlir::FloatType>())
|
||||
return b.create<arith::CmpFOp>(loc, arith::CmpFPredicate::ULT,
|
||||
payloadArgs[0], otherPromoted);
|
||||
if (IntegerType intType = dtype.dyn_cast<mlir::IntegerType>()) {
|
||||
if (!operands[1].getType().isa<mlir::IntegerType>()) {
|
||||
// TODO: Promote tensor operand from integer to float.
|
||||
ltScalar.emitError(
|
||||
"unimplemented: type promotion from tensor to scalar");
|
||||
return nullptr;
|
||||
}
|
||||
if (intType.isUnsigned())
|
||||
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
|
||||
payloadArgs[0], otherPromoted);
|
||||
if (intType.isSigned())
|
||||
return b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
|
||||
payloadArgs[0], otherPromoted);
|
||||
}
|
||||
ltScalar.emitError("unimplemented: dtype isn't supported.");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (auto whereSelf = dyn_cast<AtenWhereSelfOp>(op)) {
|
||||
Type dtype = converter->convertType(whereSelf.getType())
|
||||
.cast<RankedTensorType>()
|
||||
|
@ -2130,8 +2237,9 @@ struct ConvertElementwiseOp : ConversionPattern {
|
|||
AtenClampOp, AtenRsubScalarOp, AtenMulScalarOp, AtenLogOp,
|
||||
AtenSqrtOp, AtenFloorOp, AtenPowTensorScalarOp, AtenLog2Op,
|
||||
AtenRsqrtOp, AtenDivScalarOp, AtenAbsOp, AtenReciprocalOp,
|
||||
AtenBitwiseAndTensorOp, AtenGtScalarOp, AtenWhereSelfOp,
|
||||
AtenCeilOp, AtenGtTensorOp>(op))
|
||||
AtenBitwiseAndTensorOp, AtenGtScalarOp, AtenEqScalarOp,
|
||||
AtenLtScalarOp, AtenWhereSelfOp, AtenCeilOp, AtenGtTensorOp,
|
||||
AtenEqTensorOp, AtenLtTensorOp>(op))
|
||||
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
|
||||
|
||||
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
||||
|
@ -3788,7 +3896,8 @@ public:
|
|||
AtenToDtypeOp, AtenClampOp, AtenRsubScalarOp, AtenLogOp, AtenSqrtOp,
|
||||
AtenFloorOp, AtenCeilOp, AtenPowTensorScalarOp, AtenLog2Op, AtenRsqrtOp,
|
||||
AtenAbsOp, AtenReciprocalOp, AtenBitwiseAndTensorOp, AtenGtScalarOp,
|
||||
AtenWhereSelfOp, AtenGtTensorOp>();
|
||||
AtenEqScalarOp, AtenLtScalarOp, AtenWhereSelfOp, AtenGtTensorOp,
|
||||
AtenEqTensorOp, AtenLtTensorOp>();
|
||||
patterns.add<ConvertElementwiseOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenSqueezeOp>();
|
||||
patterns.add<ConvertAtenSqueezeOp>(typeConverter, context);
|
||||
|
|
|
@ -247,8 +247,8 @@ public:
|
|||
}
|
||||
|
||||
// These comparison ops return a tensor with 1-bit integer dtype.
|
||||
if (isa<AtenEqScalarOp, AtenGeScalarOp, AtenGtScalarOp, AtenNeScalarOp>(
|
||||
op)) {
|
||||
if (isa<AtenEqScalarOp, AtenGeScalarOp, AtenGtScalarOp, AtenLtScalarOp,
|
||||
AtenNeScalarOp>(op)) {
|
||||
auto operand = operands[0]->getValue();
|
||||
auto knowledge =
|
||||
ValueKnowledge::getNotNonePessimisticValueState(op->getContext());
|
||||
|
@ -317,10 +317,10 @@ public:
|
|||
op)) {
|
||||
return visitBinaryTensorScalarOp(op, operands);
|
||||
} else if (isa<AtenAddTensorOp, AtenSubTensorOp, AtenMulTensorOp,
|
||||
AtenDivTensorOp, Aten__And__TensorOp, AtenEqTensorOp,
|
||||
AtenMinimumOp, AtenMaximumOp, AtenBitwiseAndTensorOp>(op)) {
|
||||
AtenDivTensorOp, Aten__And__TensorOp, AtenMinimumOp,
|
||||
AtenMaximumOp, AtenBitwiseAndTensorOp>(op)) {
|
||||
return visitBinaryBroadcastingOp(op, operands);
|
||||
} else if (isa<AtenGtTensorOp>(op)) {
|
||||
} else if (isa<AtenEqTensorOp, AtenGtTensorOp, AtenLtTensorOp>(op)) {
|
||||
return visitBinaryBroadcastingComparisonOp(op, operands);
|
||||
} else if (auto whereSelf = llvm::dyn_cast<AtenWhereSelfOp>(op)) {
|
||||
return visitAtenWhereSelfOp(whereSelf, operands);
|
||||
|
|
|
@ -461,6 +461,7 @@ def emit_aten_ops(torch_ir_dir: str, registry: Registry):
|
|||
"aten::lerp.Tensor : (Tensor, Tensor, Tensor) -> (Tensor)",
|
||||
"aten::eq.Tensor : (Tensor, Tensor) -> (Tensor)",
|
||||
"aten::gt.Tensor : (Tensor, Tensor) -> (Tensor)",
|
||||
"aten::lt.Tensor : (Tensor, Tensor) -> (Tensor)",
|
||||
"aten::ne.Tensor : (Tensor, Tensor) -> (Tensor)",
|
||||
"aten::add.Scalar : (Tensor, Scalar, Scalar) -> (Tensor)",
|
||||
"aten::sub.Scalar : (Tensor, Scalar, Scalar) -> (Tensor)",
|
||||
|
@ -470,6 +471,7 @@ def emit_aten_ops(torch_ir_dir: str, registry: Registry):
|
|||
"aten::eq.Scalar : (Tensor, Scalar) -> (Tensor)",
|
||||
"aten::gt.Scalar : (Tensor, Scalar) -> (Tensor)",
|
||||
"aten::ge.Scalar : (Tensor, Scalar) -> (Tensor)",
|
||||
"aten::lt.Scalar : (Tensor, Scalar) -> (Tensor)",
|
||||
"aten::fmod.Scalar : (Tensor, Scalar) -> (Tensor)",
|
||||
"aten::masked_fill.Scalar : (Tensor, Tensor, Scalar) -> (Tensor)",
|
||||
"aten::clamp : (Tensor, Scalar?, Scalar?) -> (Tensor)",
|
||||
|
|
Loading…
Reference in New Issue