First step of move common jit_ir_importer.

breakup_python_pytorch_deps
Stella Laurenzo 2023-11-18 18:12:15 -08:00
parent 606dc45896
commit f1d9136210
19 changed files with 432 additions and 445 deletions

View File

@ -0,0 +1 @@
add_subdirectory(csrc/jit_ir_importer)

View File

@ -0,0 +1,26 @@
# Static library with core functionality.
# We can't use a shared library here, due to issues with linking on macOS-arm64 (the library itself won't build)
# For details, see: https://github.com/llvm/torch-mlir/runs/7919012376
add_library(TorchMLIRJITIRImporter STATIC
class_annotator.cpp
function_importer.cpp
node_importer.cpp
ivalue_importer.cpp
torch_to_mlir_utils.cpp
)
target_link_libraries(TorchMLIRJITIRImporter
TorchMLIRAggregateCAPI
${TORCH_LIBRARIES}
)
# Includes are relative to the csrc dir (i.e. #include "jit_ir_importer/...")
target_include_directories(TorchMLIRJITIRImporter PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/..
)
set_target_properties(TorchMLIRJITIRImporter PROPERTIES
LIBRARY_OUTPUT_DIRECTORY "${TORCH_MLIR_PYTHON_PACKAGES_DIR}/torch_mlir/torch_mlir/_mlir_libs"
OUTPUT_NAME lib_jit_ir_importer
PREFIX ""
SUFFIX ".a"
CXX_VISIBILITY_PRESET "default"
COMPILE_FLAGS "${TORCH_CXXFLAGS}"
)

View File

@ -18,8 +18,8 @@ using namespace torch_mlir;
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// Prefix every line of `s` with `linePrefix`. // Prefix every line of `s` with `linePrefix`.
static std::string static std::string indentString(const std::string &linePrefix,
indentString(const std::string& linePrefix, const std::string& s) { const std::string &s) {
std::stringstream is(s); std::stringstream is(s);
std::stringstream os; std::stringstream os;
std::string line; std::string line;
@ -46,8 +46,7 @@ std::vector<AttributeAnnotation>& ClassAnnotation::getAttributeAnnotations() {
// We can't easily guard against attributes being removed and // We can't easily guard against attributes being removed and
// then other attributes being added, or types changed, etc. without // then other attributes being added, or types changed, etc. without
// effectively mirroring the entire ClassType. // effectively mirroring the entire ClassType.
assert( assert(attributeAnnotations.size() == classType->getAttributes().size() &&
attributeAnnotations.size() == classType->getAttributes().size() &&
"annotations out of sync. class has been mutated"); "annotations out of sync. class has been mutated");
return attributeAnnotations; return attributeAnnotations;
@ -58,8 +57,7 @@ std::vector<MethodAnnotation>& ClassAnnotation::getMethodAnnotations() {
// been mutated. // been mutated.
// //
// We can't easily guard against methods being removed, added, or changed. // We can't easily guard against methods being removed, added, or changed.
assert( assert(methodAnnotations.size() == classType->methods().size() &&
methodAnnotations.size() == classType->methods().size() &&
"annotations out of sync. class has been mutated"); "annotations out of sync. class has been mutated");
return methodAnnotations; return methodAnnotations;
@ -69,8 +67,8 @@ std::vector<MethodAnnotation>& ClassAnnotation::getMethodAnnotations() {
// ClassAnnotator // ClassAnnotator
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
static void static void exportNoneRecurse(ClassAnnotator &classAnnotator,
exportNoneRecurse(ClassAnnotator& classAnnotator, c10::ClassType* classType) { c10::ClassType *classType) {
ClassAnnotation &classAnnotation = ClassAnnotation &classAnnotation =
classAnnotator.getOrCreateClassAnnotation(classType); classAnnotator.getOrCreateClassAnnotation(classType);
for (auto &attributeAnnotation : classAnnotation.getAttributeAnnotations()) { for (auto &attributeAnnotation : classAnnotation.getAttributeAnnotations()) {
@ -91,14 +89,14 @@ void ClassAnnotator::exportNone(c10::ClassType& rootClassType) {
exportNoneRecurse(*this, &rootClassType); exportNoneRecurse(*this, &rootClassType);
} }
void ClassAnnotator::exportPath( void ClassAnnotator::exportPath(c10::ClassType &rootClassType,
c10::ClassType& rootClassType, std::vector<std::string> exportedPath) { std::vector<std::string> exportedPath) {
if (exportedPath.size() == 0) { if (exportedPath.size() == 0) {
throw std::invalid_argument( throw std::invalid_argument(
"Empty exported path. Can only export a property of a class."); "Empty exported path. Can only export a property of a class.");
} }
c10::ClassType* classType = getClassAtPath( c10::ClassType *classType =
&rootClassType, c10::ArrayRef<std::string>(exportedPath) getClassAtPath(&rootClassType, c10::ArrayRef<std::string>(exportedPath)
.slice(0, exportedPath.size() - 1) .slice(0, exportedPath.size() - 1)
.vec()); .vec());
@ -151,23 +149,23 @@ ClassAnnotator::getOrCreateClassAnnotation(c10::ClassType* classType) {
return *it->second; return *it->second;
} }
static void fillArgAnnotations( static void fillArgAnnotations(MethodAnnotation &methodAnnotation,
MethodAnnotation& methodAnnotation, std::vector<ArgAnnotation> argAnnotations,
std::vector<ArgAnnotation> argAnnotations, torch::jit::Function* function) { torch::jit::Function *function) {
if (argAnnotations.size() != function->num_inputs()) { if (argAnnotations.size() != function->num_inputs()) {
throw std::invalid_argument("Arg annotations should have one entry per " throw std::invalid_argument("Arg annotations should have one entry per "
"function parameter (including self)."); "function parameter (including self).");
} }
if (!methodAnnotation.argAnnotations.has_value()) { if (!methodAnnotation.argAnnotations.has_value()) {
methodAnnotation.argAnnotations.emplace( methodAnnotation.argAnnotations.emplace(function->num_inputs(),
function->num_inputs(), ArgAnnotation{}); ArgAnnotation{});
} }
methodAnnotation.argAnnotations = argAnnotations; methodAnnotation.argAnnotations = argAnnotations;
} }
void ClassAnnotator::annotateArgs( void ClassAnnotator::annotateArgs(c10::ClassType &rootClassType,
c10::ClassType& rootClassType, std::vector<std::string> path, std::vector<std::string> path,
std::vector<ArgAnnotation> argAnnotations) { std::vector<ArgAnnotation> argAnnotations) {
if (path.size() == 0) { if (path.size() == 0) {
throw std::invalid_argument("Empty annotated path. Can only annotate " throw std::invalid_argument("Empty annotated path. Can only annotate "
@ -193,8 +191,8 @@ void ClassAnnotator::annotateArgs(
return; return;
} }
c10::ClassType* ClassAnnotator::getClassAtPath( c10::ClassType *ClassAnnotator::getClassAtPath(c10::ClassType *rootClassType,
c10::ClassType* rootClassType, std::vector<std::string> path) { std::vector<std::string> path) {
c10::ClassType *classType = rootClassType; c10::ClassType *classType = rootClassType;
// Reverse so that pop_back gives us the initial atoms first. // Reverse so that pop_back gives us the initial atoms first.
std::reverse(path.begin(), path.end()); std::reverse(path.begin(), path.end());

View File

@ -141,8 +141,8 @@ public:
// For example, if `exportedPath = ['a', 'b']`, then `rootClassType` should // For example, if `exportedPath = ['a', 'b']`, then `rootClassType` should
// have a submodule `a` and that submodule should have a method or attribute // have a submodule `a` and that submodule should have a method or attribute
// `b`. // `b`.
void exportPath( void exportPath(c10::ClassType &rootClassType,
c10::ClassType& rootClassType, std::vector<std::string> exportedPath); std::vector<std::string> exportedPath);
// Mark everything as not-exported. // Mark everything as not-exported.
// //
// This is kind of useless by itself, but together with `exportPath` allows // This is kind of useless by itself, but together with `exportPath` allows
@ -159,8 +159,8 @@ public:
// a "has value semantics" boolean. // a "has value semantics" boolean.
// These will be put into an `ArgAnnotation` struct -- see there for // These will be put into an `ArgAnnotation` struct -- see there for
// precise definitions of the promised semantics of each entry. // precise definitions of the promised semantics of each entry.
void annotateArgs( void annotateArgs(c10::ClassType &rootClassType,
c10::ClassType& rootClassType, std::vector<std::string> path, std::vector<std::string> path,
std::vector<ArgAnnotation> argAnnotations); std::vector<ArgAnnotation> argAnnotations);
// The annotations collected so far. // The annotations collected so far.
@ -183,8 +183,8 @@ private:
// Traverse `path` starting from `rootClassType` to find the ClassType // Traverse `path` starting from `rootClassType` to find the ClassType
// of a presumed nested submodule. Throw an error if there is no such // of a presumed nested submodule. Throw an error if there is no such
// submodule. // submodule.
c10::ClassType* c10::ClassType *getClassAtPath(c10::ClassType *rootClassType,
getClassAtPath(c10::ClassType* rootClassType, std::vector<std::string> path); std::vector<std::string> path);
ClassAnnotationMap classAnnotations; ClassAnnotationMap classAnnotations;
// Reverse mapping used to service getMethodAnnotationForFunction. // Reverse mapping used to service getMethodAnnotationForFunction.
std::unordered_map<torch::jit::Function *, MethodAnnotation *> std::unordered_map<torch::jit::Function *, MethodAnnotation *>

View File

@ -63,8 +63,7 @@ MlirOperation torch_mlir::importJitFunctionAsFuncOp(
} }
auto createTerminator = [&](c10::ArrayRef<MlirValue> yieldedValues, auto createTerminator = [&](c10::ArrayRef<MlirValue> yieldedValues,
MlirBlock appendToBlock) { MlirBlock appendToBlock) {
createMlirOperationAtEnd( createMlirOperationAtEnd(appendToBlock, "func.return", loc,
appendToBlock, "func.return", loc,
adjustStaticInformationForValues( adjustStaticInformationForValues(
appendToBlock, loc, yieldedValues, resultTypes, appendToBlock, loc, yieldedValues, resultTypes,
/*userAllowsRefinement=*/false)); /*userAllowsRefinement=*/false));

View File

@ -99,9 +99,8 @@ namespace {
/// (PyTorch allows this!). /// (PyTorch allows this!).
class IValueImporter { class IValueImporter {
public: public:
IValueImporter( IValueImporter(MlirBlock importBlock, MlirContext context,
MlirBlock importBlock, MlirContext context, ClassAnnotator& annotator, ClassAnnotator &annotator, const ImportOptions &importOptions)
const ImportOptions& importOptions)
: importBlock(importBlock), context(context), annotator(annotator), : importBlock(importBlock), context(context), annotator(annotator),
importOptions(importOptions) {} importOptions(importOptions) {}
@ -111,8 +110,7 @@ private:
MlirValue rawImportIValue(c10::IValue ivalue); MlirValue rawImportIValue(c10::IValue ivalue);
MlirValue importTensor(c10::IValue ivalue); MlirValue importTensor(c10::IValue ivalue);
MlirValue importModule(torch::jit::Module jitModule); MlirValue importModule(torch::jit::Module jitModule);
void importMethod( void importMethod(torch::jit::Function *function, MlirBlock classTypeBody,
torch::jit::Function* function, MlirBlock classTypeBody,
const MethodAnnotation &methodAnnotation); const MethodAnnotation &methodAnnotation);
void importClassType(c10::ClassType *classType); void importClassType(c10::ClassType *classType);
void importCompilationUnit(torch::jit::CompilationUnit *cu); void importCompilationUnit(torch::jit::CompilationUnit *cu);
@ -192,8 +190,8 @@ MlirValue IValueImporter::importModule(torch::jit::Module currentModule) {
torchMlirTorchNnModuleTypeGet(context, toMlirStringRef(moduleTypeName)), torchMlirTorchNnModuleTypeGet(context, toMlirStringRef(moduleTypeName)),
mlirRegionCreate()); mlirRegionCreate());
MlirRegion nnModuleRegion = mlirOperationGetRegion(nnModule, 0); MlirRegion nnModuleRegion = mlirOperationGetRegion(nnModule, 0);
mlirRegionAppendOwnedBlock( mlirRegionAppendOwnedBlock(nnModuleRegion,
nnModuleRegion, mlirBlockCreate(0, nullptr, nullptr)); mlirBlockCreate(0, nullptr, nullptr));
MlirBlock nnModuleBody = mlirRegionGetFirstBlock(nnModuleRegion); MlirBlock nnModuleBody = mlirRegionGetFirstBlock(nnModuleRegion);
InserterGuard inserterGuard(importBlock, nnModule); InserterGuard inserterGuard(importBlock, nnModule);
@ -204,8 +202,7 @@ MlirValue IValueImporter::importModule(torch::jit::Module currentModule) {
const std::vector<c10::IValue> &slots = currentModule._ivalue()->slots(); const std::vector<c10::IValue> &slots = currentModule._ivalue()->slots();
const std::vector<c10::ClassAttribute> &classAttributes = const std::vector<c10::ClassAttribute> &classAttributes =
currentModule.type()->getAttributes(); currentModule.type()->getAttributes();
assert( assert(slots.size() == classAttributes.size() &&
slots.size() == classAttributes.size() &&
"mismatch between object and type!"); "mismatch between object and type!");
for (int i = 0, e = slots.size(); i < e; i++) { for (int i = 0, e = slots.size(); i < e; i++) {
const c10::ClassAttribute &classAttribute = classAttributes[i]; const c10::ClassAttribute &classAttribute = classAttributes[i];
@ -261,8 +258,8 @@ MlirValue IValueImporter::rawImportIValue(c10::IValue ivalue) {
MlirType type = torchMlirTorchBoolTypeGet(context); MlirType type = torchMlirTorchBoolTypeGet(context);
MlirOperation operation = createMlirOperationAtEnd( MlirOperation operation = createMlirOperationAtEnd(
importBlock, "torch.constant.bool", loc, type, importBlock, "torch.constant.bool", loc, type,
toMlirNamedAttribute( toMlirNamedAttribute("value",
"value", mlirBoolAttrGet(context, ivalue.toBool()))); mlirBoolAttrGet(context, ivalue.toBool())));
return mlirOperationGetResult(operation, 0); return mlirOperationGetResult(operation, 0);
} }
if (ivalue.isDouble()) { if (ivalue.isDouble()) {
@ -270,17 +267,17 @@ MlirValue IValueImporter::rawImportIValue(c10::IValue ivalue) {
MlirOperation operation = createMlirOperationAtEnd( MlirOperation operation = createMlirOperationAtEnd(
importBlock, "torch.constant.float", loc, type, importBlock, "torch.constant.float", loc, type,
toMlirNamedAttribute( toMlirNamedAttribute(
"value", mlirFloatAttrDoubleGet( "value", mlirFloatAttrDoubleGet(context, mlirF64TypeGet(context),
context, mlirF64TypeGet(context), ivalue.toDouble()))); ivalue.toDouble())));
return mlirOperationGetResult(operation, 0); return mlirOperationGetResult(operation, 0);
} }
if (ivalue.isInt()) { if (ivalue.isInt()) {
MlirType type = torchMlirTorchIntTypeGet(context); MlirType type = torchMlirTorchIntTypeGet(context);
MlirOperation operation = createMlirOperationAtEnd( MlirOperation operation = createMlirOperationAtEnd(
importBlock, "torch.constant.int", loc, type, importBlock, "torch.constant.int", loc, type,
toMlirNamedAttribute( toMlirNamedAttribute("value",
"value", mlirIntegerAttrGet( mlirIntegerAttrGet(mlirIntegerTypeGet(context, 64),
mlirIntegerTypeGet(context, 64), ivalue.toInt()))); ivalue.toInt())));
return mlirOperationGetResult(operation, 0); return mlirOperationGetResult(operation, 0);
} }
if (ivalue.isList()) { if (ivalue.isList()) {
@ -339,13 +336,13 @@ MlirValue IValueImporter::rawImportIValue(c10::IValue ivalue) {
torchMlirTorchStringTypeGet(context), torchMlirTorchStringTypeGet(context),
toMlirNamedAttribute( toMlirNamedAttribute(
"value", "value",
mlirStringAttrGet( mlirStringAttrGet(context,
context, toMlirStringRef(ivalue.toString()->string())))); toMlirStringRef(ivalue.toString()->string()))));
return mlirOperationGetResult(operation, 0); return mlirOperationGetResult(operation, 0);
} }
if (ivalue.isNone()) { if (ivalue.isNone()) {
MlirOperation operation = createMlirOperationAtEnd( MlirOperation operation =
importBlock, "torch.constant.none", loc, createMlirOperationAtEnd(importBlock, "torch.constant.none", loc,
torchMlirTorchNoneTypeGet(context)); torchMlirTorchNoneTypeGet(context));
return mlirOperationGetResult(operation, 0); return mlirOperationGetResult(operation, 0);
} }
@ -440,8 +437,8 @@ MlirValue IValueImporter::importTensor(c10::IValue ivalue) {
return tensorValue; return tensorValue;
} }
void IValueImporter::importMethod( void IValueImporter::importMethod(torch::jit::Function *function,
torch::jit::Function* function, MlirBlock classTypeBody, MlirBlock classTypeBody,
const MethodAnnotation &methodAnnotation) { const MethodAnnotation &methodAnnotation) {
// The function's name becomes the MLIR symbol table name of the imported func // The function's name becomes the MLIR symbol table name of the imported func
// when we import the compilation unit. // when we import the compilation unit.
@ -568,8 +565,8 @@ void IValueImporter::importCompilationUnit(torch::jit::CompilationUnit* cu) {
int64_t dummy; int64_t dummy;
int64_t *shapeData = shape.size() == 0 ? &dummy : shape.data(); int64_t *shapeData = shape.size() == 0 ? &dummy : shape.data();
if (hasValueSemantics) { if (hasValueSemantics) {
typeBound = torchMlirTorchValueTensorTypeGet( typeBound = torchMlirTorchValueTensorTypeGet(context, shape.size(),
context, shape.size(), shapeData, dtype); shapeData, dtype);
} else { } else {
typeBound = torchMlirTorchNonValueTensorTypeGet( typeBound = torchMlirTorchNonValueTensorTypeGet(
context, shape.size(), shapeData, dtype); context, shape.size(), shapeData, dtype);
@ -597,9 +594,10 @@ void IValueImporter::importCompilationUnit(torch::jit::CompilationUnit* cu) {
} }
} }
MlirValue torch_mlir::importIValue( MlirValue torch_mlir::importIValue(c10::IValue ivalue, MlirBlock block,
c10::IValue ivalue, MlirBlock block, MlirContext context, MlirContext context,
ClassAnnotator& annotator, const ImportOptions& importOptions) { ClassAnnotator &annotator,
const ImportOptions &importOptions) {
// When debugging module importing, it can be useful to dump as so: // When debugging module importing, it can be useful to dump as so:
// if (ivalue.isModule()) // if (ivalue.isModule())
// ivalue.toModule().dump(true, false, false); // ivalue.toModule().dump(true, false, false);

View File

@ -25,9 +25,9 @@ namespace torch_mlir {
/// Main entry-point for importing torch IValue's . /// Main entry-point for importing torch IValue's .
/// Recursively imports `ivalue`, inserting operations at the end of `block`. /// Recursively imports `ivalue`, inserting operations at the end of `block`.
MlirValue importIValue( MlirValue importIValue(c10::IValue ivalue, MlirBlock block, MlirContext context,
c10::IValue ivalue, MlirBlock block, MlirContext context, ClassAnnotator &annotator,
ClassAnnotator& annotator, const ImportOptions& importOptions); const ImportOptions &importOptions);
} // namespace torch_mlir } // namespace torch_mlir

View File

@ -30,50 +30,50 @@ inline MlirStringRef toMlirStringRef(const char* s) {
return mlirStringRefCreate(s, std::strlen(s)); return mlirStringRefCreate(s, std::strlen(s));
} }
inline MlirNamedAttribute inline MlirNamedAttribute toMlirNamedAttribute(const char *s,
toMlirNamedAttribute(const char* s, MlirAttribute attr) { MlirAttribute attr) {
MlirContext context = mlirAttributeGetContext(attr); MlirContext context = mlirAttributeGetContext(attr);
MlirIdentifier ident = mlirIdentifierGet(context, toMlirStringRef(s)); MlirIdentifier ident = mlirIdentifierGet(context, toMlirStringRef(s));
return mlirNamedAttributeGet(ident, attr); return mlirNamedAttributeGet(ident, attr);
} }
inline void addToMlirOperationState( inline void addToMlirOperationState(MlirOperationState &state,
MlirOperationState& state, MlirNamedAttribute namedAttr) { MlirNamedAttribute namedAttr) {
mlirOperationStateAddAttributes(&state, 1, &namedAttr); mlirOperationStateAddAttributes(&state, 1, &namedAttr);
} }
inline void inline void addToMlirOperationState(MlirOperationState &state,
addToMlirOperationState(MlirOperationState& state, MlirRegion region) { MlirRegion region) {
mlirOperationStateAddOwnedRegions(&state, 1, &region); mlirOperationStateAddOwnedRegions(&state, 1, &region);
} }
inline void inline void addToMlirOperationState(MlirOperationState &state,
addToMlirOperationState(MlirOperationState& state, MlirValue value) { MlirValue value) {
mlirOperationStateAddOperands(&state, 1, &value); mlirOperationStateAddOperands(&state, 1, &value);
} }
inline void addToMlirOperationState( inline void addToMlirOperationState(MlirOperationState &state,
MlirOperationState& state, const std::vector<MlirValue>& values) { const std::vector<MlirValue> &values) {
mlirOperationStateAddOperands(&state, values.size(), values.data()); mlirOperationStateAddOperands(&state, values.size(), values.data());
} }
inline void addToMlirOperationState( inline void addToMlirOperationState(MlirOperationState &state,
MlirOperationState& state, c10::ArrayRef<MlirValue> values) { c10::ArrayRef<MlirValue> values) {
mlirOperationStateAddOperands(&state, values.size(), values.data()); mlirOperationStateAddOperands(&state, values.size(), values.data());
} }
inline void inline void addToMlirOperationState(MlirOperationState &state,
addToMlirOperationState(MlirOperationState& state, MlirType resultType) { MlirType resultType) {
mlirOperationStateAddResults(&state, 1, &resultType); mlirOperationStateAddResults(&state, 1, &resultType);
} }
inline void addToMlirOperationState( inline void addToMlirOperationState(MlirOperationState &state,
MlirOperationState& state, const std::vector<MlirType>& resultTypes) { const std::vector<MlirType> &resultTypes) {
mlirOperationStateAddResults(&state, resultTypes.size(), resultTypes.data()); mlirOperationStateAddResults(&state, resultTypes.size(), resultTypes.data());
} }
inline void addToMlirOperationState( inline void addToMlirOperationState(MlirOperationState &state,
MlirOperationState& state, c10::ArrayRef<MlirType> resultTypes) { c10::ArrayRef<MlirType> resultTypes) {
mlirOperationStateAddResults(&state, resultTypes.size(), resultTypes.data()); mlirOperationStateAddResults(&state, resultTypes.size(), resultTypes.data());
} }
@ -87,27 +87,27 @@ void addToMlirOperationState(MlirOperationState& state, c10::optional<T> o) {
inline void addToMlirOperationState(MlirOperationState &state) {} inline void addToMlirOperationState(MlirOperationState &state) {}
template <typename T, typename U, typename... Ts> template <typename T, typename U, typename... Ts>
void addToMlirOperationState( void addToMlirOperationState(MlirOperationState &state, T &&t, U &&u,
MlirOperationState& state, T&& t, U&& u, Ts&&... ts) { Ts &&...ts) {
addToMlirOperationState(state, std::forward<T>(t)); addToMlirOperationState(state, std::forward<T>(t));
addToMlirOperationState(state, std::forward<U>(u), std::forward<Ts>(ts)...); addToMlirOperationState(state, std::forward<U>(u), std::forward<Ts>(ts)...);
} }
template <typename... Ts> template <typename... Ts>
MlirOperation MlirOperation createMlirOperation(std::string name, MlirLocation loc,
createMlirOperation(std::string name, MlirLocation loc, Ts&&... ts) { Ts &&...ts) {
MlirOperationState state = mlirOperationStateGet(toMlirStringRef(name), loc); MlirOperationState state = mlirOperationStateGet(toMlirStringRef(name), loc);
addToMlirOperationState(state, std::forward<Ts>(ts)...); addToMlirOperationState(state, std::forward<Ts>(ts)...);
return mlirOperationCreate(&state); return mlirOperationCreate(&state);
} }
template <typename... Ts> template <typename... Ts>
MlirOperation createMlirOperationAtEnd( MlirOperation createMlirOperationAtEnd(MlirBlock block, std::string name,
MlirBlock block, std::string name, MlirLocation loc, Ts&&... ts) { MlirLocation loc, Ts &&...ts) {
MlirOperation operation = MlirOperation operation =
createMlirOperation(name, loc, std::forward<Ts>(ts)...); createMlirOperation(name, loc, std::forward<Ts>(ts)...);
mlirBlockInsertOwnedOperationBefore( mlirBlockInsertOwnedOperationBefore(block, mlirBlockGetTerminator(block),
block, mlirBlockGetTerminator(block), operation); operation);
return operation; return operation;
} }

View File

@ -33,8 +33,7 @@ class NodeImporter {
public: public:
NodeImporter(MlirContext context) : context(context) {} NodeImporter(MlirContext context) : context(context) {}
void importNode( void importNode(Node *node, MlirBlock appendToBlock,
Node* node, MlirBlock appendToBlock,
const ImportOptions &importOptions = {}); const ImportOptions &importOptions = {});
MlirBlock importBlock( MlirBlock importBlock(
Block *jitBlock, CreateTerminatorFn createTerminator, Block *jitBlock, CreateTerminatorFn createTerminator,
@ -42,8 +41,8 @@ public:
const ImportOptions &importOptions = {}); const ImportOptions &importOptions = {});
private: private:
MlirBlock createBlockFor( MlirBlock createBlockFor(Block *jitBlock,
Block* jitBlock, c10::optional<c10::ArrayRef<MlirType>> blockArgTypes, c10::optional<c10::ArrayRef<MlirType>> blockArgTypes,
const ImportOptions &importOptions = {}); const ImportOptions &importOptions = {});
void mapValue(Value *jitValue, MlirValue value); void mapValue(Value *jitValue, MlirValue value);
void mapResults(Node *node, MlirOperation operation); void mapResults(Node *node, MlirOperation operation);
@ -66,8 +65,7 @@ static std::vector<MlirValue>
rearrangeDictConstructInputs(std::vector<MlirValue> &inputs) { rearrangeDictConstructInputs(std::vector<MlirValue> &inputs) {
if (inputs.empty()) if (inputs.empty())
return inputs; return inputs;
assert( assert(inputs.size() % 2 == 0 &&
inputs.size() % 2 == 0 &&
"DictConstruct must have even number of operands"); "DictConstruct must have even number of operands");
std::vector<MlirValue> rearranged; std::vector<MlirValue> rearranged;
@ -80,8 +78,8 @@ rearrangeDictConstructInputs(std::vector<MlirValue>& inputs) {
return rearranged; return rearranged;
} }
void NodeImporter::importNode( void NodeImporter::importNode(Node *node, MlirBlock appendToBlock,
Node* node, MlirBlock appendToBlock, const ImportOptions& importOptions) { const ImportOptions &importOptions) {
MlirLocation loc = getMlirLocationFromNode(context, node); MlirLocation loc = getMlirLocationFromNode(context, node);
auto kind = node->kind(); auto kind = node->kind();
@ -140,8 +138,8 @@ void NodeImporter::importNode(
} }
return type; return type;
}); });
createAndMapTrivialNode( createAndMapTrivialNode(node,
node, "torch.prim." + std::string(kind.toUnqualString()), "torch.prim." + std::string(kind.toUnqualString()),
[&](std::vector<MlirValue> &inputs) { [&](std::vector<MlirValue> &inputs) {
assert(containedTypes.size() == inputs.size()); assert(containedTypes.size() == inputs.size());
return adjustStaticInformationForValues( return adjustStaticInformationForValues(
@ -151,8 +149,8 @@ void NodeImporter::importNode(
return; return;
} }
case c10::prim::DictConstruct: { case c10::prim::DictConstruct: {
createAndMapTrivialNode( createAndMapTrivialNode(node,
node, "torch.prim." + std::string(kind.toUnqualString()), "torch.prim." + std::string(kind.toUnqualString()),
rearrangeDictConstructInputs); rearrangeDictConstructInputs);
return; return;
} }
@ -171,34 +169,32 @@ void NodeImporter::importNode(
auto output = node->output(); auto output = node->output();
MlirOperation op; MlirOperation op;
if (output->type()->cast<c10::NoneType>()) { if (output->type()->cast<c10::NoneType>()) {
op = createMlirOperation( op = createMlirOperation("torch.constant.none", loc,
"torch.constant.none", loc, torchMlirTorchNoneTypeGet(context)); torchMlirTorchNoneTypeGet(context));
} else if (output->type()->cast<c10::BoolType>()) { } else if (output->type()->cast<c10::BoolType>()) {
op = createMlirOperation( op = createMlirOperation(
"torch.constant.bool", loc, torchMlirTorchBoolTypeGet(context), "torch.constant.bool", loc, torchMlirTorchBoolTypeGet(context),
toMlirNamedAttribute( toMlirNamedAttribute(
"value", "value", mlirBoolAttrGet(context, static_cast<bool>(node->i(
mlirBoolAttrGet( c10::attr::value)))));
context, static_cast<bool>(node->i(c10::attr::value)))));
} else if (output->type()->cast<c10::IntType>()) { } else if (output->type()->cast<c10::IntType>()) {
op = createMlirOperation( op = createMlirOperation(
"torch.constant.int", loc, "torch.constant.int", loc,
getMlirTypeFromTorchType(loc, output->type(), importOptions), getMlirTypeFromTorchType(loc, output->type(), importOptions),
toMlirNamedAttribute( toMlirNamedAttribute("value",
"value", importAttribute(loc, node, c10::attr::value))); importAttribute(loc, node, c10::attr::value)));
} else if (output->type()->cast<c10::FloatType>()) { } else if (output->type()->cast<c10::FloatType>()) {
op = createMlirOperation( op = createMlirOperation(
"torch.constant.float", loc, "torch.constant.float", loc,
getMlirTypeFromTorchType(loc, output->type(), importOptions), getMlirTypeFromTorchType(loc, output->type(), importOptions),
toMlirNamedAttribute( toMlirNamedAttribute("value",
"value", importAttribute(loc, node, c10::attr::value))); importAttribute(loc, node, c10::attr::value)));
} else if (output->type()->cast<c10::StringType>()) { } else if (output->type()->cast<c10::StringType>()) {
op = createMlirOperation( op = createMlirOperation(
"torch.constant.str", loc, torchMlirTorchStringTypeGet(context), "torch.constant.str", loc, torchMlirTorchStringTypeGet(context),
toMlirNamedAttribute( toMlirNamedAttribute(
"value", "value", mlirStringAttrGet(context, toMlirStringRef(node->s(
mlirStringAttrGet( c10::attr::value)))));
context, toMlirStringRef(node->s(c10::attr::value)))));
} else if (output->type()->cast<c10::TensorType>()) { } else if (output->type()->cast<c10::TensorType>()) {
MlirAttribute attr = importAttribute(loc, node, c10::attr::value); MlirAttribute attr = importAttribute(loc, node, c10::attr::value);
if (importOptions.assumeTensorsHaveValueSemantics) { if (importOptions.assumeTensorsHaveValueSemantics) {
@ -217,26 +213,24 @@ void NodeImporter::importNode(
"torch.constant.device", loc, "torch.constant.device", loc,
getMlirTypeFromTorchType(loc, output->type(), importOptions), getMlirTypeFromTorchType(loc, output->type(), importOptions),
toMlirNamedAttribute( toMlirNamedAttribute(
"value", "value", mlirStringAttrGet(context, toMlirStringRef(node->s(
mlirStringAttrGet( c10::attr::value)))));
context, toMlirStringRef(node->s(c10::attr::value)))));
} else if (auto functionType = output->type()->cast<c10::FunctionType>()) { } else if (auto functionType = output->type()->cast<c10::FunctionType>()) {
torch::jit::Function *function = functionType->function(); torch::jit::Function *function = functionType->function();
const std::string &symName = function->qualname().qualifiedName(); const std::string &symName = function->qualname().qualifiedName();
op = createMlirOperation( op = createMlirOperation(
"func.constant", loc, "func.constant", loc,
getFunctionTypeFromSchema( getFunctionTypeFromSchema(context, function->getSchema(),
context, function->getSchema(), importOptions), importOptions),
toMlirNamedAttribute( toMlirNamedAttribute(
"value", "value",
mlirFlatSymbolRefAttrGet(context, toMlirStringRef(symName)))); mlirFlatSymbolRefAttrGet(context, toMlirStringRef(symName))));
} else if ( } else if (output->type()->cast<c10::ListType>() ||
output->type()->cast<c10::ListType>() ||
output->type()->cast<c10::TupleType>()) { output->type()->cast<c10::TupleType>()) {
ClassAnnotator dummyAnnotator; ClassAnnotator dummyAnnotator;
MlirValue listOrTupleValue = importIValue( MlirValue listOrTupleValue =
node->ival(c10::attr::value), appendToBlock, context, dummyAnnotator, importIValue(node->ival(c10::attr::value), appendToBlock, context,
importOptions); dummyAnnotator, importOptions);
mapResults(node, mlirOpResultGetOwner(listOrTupleValue)); mapResults(node, mlirOpResultGetOwner(listOrTupleValue));
return; // Early return, since `importIValue` already added op to block. return; // Early return, since `importIValue` already added op to block.
} else { } else {
@ -264,20 +258,19 @@ void NodeImporter::importNode(
mapResults(node, operation); mapResults(node, operation);
std::vector<MlirType> terminatorOperandTypes = { std::vector<MlirType> terminatorOperandTypes = {
torchMlirTorchBoolTypeGet(context)}; torchMlirTorchBoolTypeGet(context)};
terminatorOperandTypes.insert( terminatorOperandTypes.insert(terminatorOperandTypes.end(),
terminatorOperandTypes.end(), resultTypes.begin(), resultTypes.end()); resultTypes.begin(), resultTypes.end());
auto createTerminator = [&](c10::ArrayRef<MlirValue> yieldedValues, auto createTerminator = [&](c10::ArrayRef<MlirValue> yieldedValues,
MlirBlock appendToBlock) { MlirBlock appendToBlock) {
createMlirOperationAtEnd( createMlirOperationAtEnd(
appendToBlock, "torch.prim.Loop.condition", loc, appendToBlock, "torch.prim.Loop.condition", loc,
adjustStaticInformationForValues( adjustStaticInformationForValues(appendToBlock, loc, yieldedValues,
appendToBlock, loc, yieldedValues, terminatorOperandTypes, terminatorOperandTypes,
/*userAllowsRefinement=*/false)); /*userAllowsRefinement=*/false));
}; };
mlirRegionAppendOwnedBlock( mlirRegionAppendOwnedBlock(mlirOperationGetRegion(operation, 0),
mlirOperationGetRegion(operation, 0), importBlock(node->blocks()[0], createTerminator,
importBlock( c10::nullopt, importOptions));
node->blocks()[0], createTerminator, c10::nullopt, importOptions));
return; return;
} }
@ -292,18 +285,16 @@ void NodeImporter::importNode(
MlirBlock appendToBlock) { MlirBlock appendToBlock) {
createMlirOperationAtEnd( createMlirOperationAtEnd(
appendToBlock, "torch.prim.If.yield", loc, appendToBlock, "torch.prim.If.yield", loc,
adjustStaticInformationForValues( adjustStaticInformationForValues(appendToBlock, loc, yieldedValues,
appendToBlock, loc, yieldedValues, resultTypes, resultTypes,
/*userAllowsRefinement=*/false)); /*userAllowsRefinement=*/false));
}; };
mlirRegionAppendOwnedBlock( mlirRegionAppendOwnedBlock(mlirOperationGetRegion(operation, 0),
mlirOperationGetRegion(operation, 0), importBlock(node->blocks()[0], createTerminator,
importBlock( c10::nullopt, importOptions));
node->blocks()[0], createTerminator, c10::nullopt, importOptions)); mlirRegionAppendOwnedBlock(mlirOperationGetRegion(operation, 1),
mlirRegionAppendOwnedBlock( importBlock(node->blocks()[1], createTerminator,
mlirOperationGetRegion(operation, 1), c10::nullopt, importOptions));
importBlock(
node->blocks()[1], createTerminator, c10::nullopt, importOptions));
return; return;
} }
@ -323,8 +314,8 @@ void NodeImporter::importNode(
adjustStaticInformationForValues( adjustStaticInformationForValues(
appendToBlock, loc, lookupMappedValues(node->inputs()), appendToBlock, loc, lookupMappedValues(node->inputs()),
expectedTypes, /*userAllowsRefinement=*/false), expectedTypes, /*userAllowsRefinement=*/false),
toMlirNamedAttribute( toMlirNamedAttribute("name",
"name", importAttribute(loc, node, c10::attr::name))); importAttribute(loc, node, c10::attr::name)));
mapResults(node, operation); mapResults(node, operation);
return; return;
} }
@ -348,9 +339,9 @@ void NodeImporter::importNode(
// promoted result dtype for a PyTorch computation. Here we turn the call to // promoted result dtype for a PyTorch computation. Here we turn the call to
// this function to the torch dialect equivalent op `torch.promote_dtypes`. // this function to the torch dialect equivalent op `torch.promote_dtypes`.
if (functionName == "__torch_mlir_internal_promote_dtypes") { if (functionName == "__torch_mlir_internal_promote_dtypes") {
operation = createMlirOperationAtEnd( operation =
appendToBlock, "torch.promote_dtypes", loc, resultTypes, createMlirOperationAtEnd(appendToBlock, "torch.promote_dtypes", loc,
adjustedFuncArgs); resultTypes, adjustedFuncArgs);
} else { } else {
operation = createMlirOperationAtEnd( operation = createMlirOperationAtEnd(
appendToBlock, "func.call_indirect", loc, resultTypes, appendToBlock, "func.call_indirect", loc, resultTypes,
@ -369,8 +360,8 @@ void NodeImporter::importNode(
} }
} }
MlirBlock NodeImporter::importBlock( MlirBlock
Block* jitBlock, CreateTerminatorFn createTerminator, NodeImporter::importBlock(Block *jitBlock, CreateTerminatorFn createTerminator,
c10::optional<c10::ArrayRef<MlirType>> blockArgTypes, c10::optional<c10::ArrayRef<MlirType>> blockArgTypes,
const ImportOptions &importOptions) { const ImportOptions &importOptions) {
MlirBlock block = createBlockFor(jitBlock, blockArgTypes, importOptions); MlirBlock block = createBlockFor(jitBlock, blockArgTypes, importOptions);
@ -394,9 +385,9 @@ MlirBlock NodeImporter::createBlockFor(
else else
assert(blockArgTypes->size() == paramNodeTypes.size()); assert(blockArgTypes->size() == paramNodeTypes.size());
std::vector<MlirLocation> blockArgLocs(paramNodeTypes.size(), loc); std::vector<MlirLocation> blockArgLocs(paramNodeTypes.size(), loc);
MlirBlock block = mlirBlockCreate( MlirBlock block =
blockArgTypes.value().size(), blockArgTypes.value().data(), mlirBlockCreate(blockArgTypes.value().size(),
blockArgLocs.data()); blockArgTypes.value().data(), blockArgLocs.data());
for (int i = 0, e = mlirBlockGetNumArguments(block); i < e; i++) { for (int i = 0, e = mlirBlockGetNumArguments(block); i < e; i++) {
Value *jitValue = paramNode->outputs()[i]; Value *jitValue = paramNode->outputs()[i];
MlirValue value = mlirBlockGetArgument(block, i); MlirValue value = mlirBlockGetArgument(block, i);
@ -415,16 +406,15 @@ void NodeImporter::mapValue(Value* jitValue, MlirValue value) {
valueMap[jitValue] = value; valueMap[jitValue] = value;
} }
void NodeImporter::mapResults(Node *node, MlirOperation operation) { void NodeImporter::mapResults(Node *node, MlirOperation operation) {
assert( assert(node->outputs().size() ==
node->outputs().size() == (size_t)mlirOperationGetNumResults(operation)); (size_t)mlirOperationGetNumResults(operation));
for (int i = 0, e = node->outputs().size(); i < e; i++) { for (int i = 0, e = node->outputs().size(); i < e; i++) {
mapValue(node->outputs()[i], mlirOperationGetResult(operation, i)); mapValue(node->outputs()[i], mlirOperationGetResult(operation, i));
} }
} }
MlirValue NodeImporter::lookupMappedValue(Value *jitValue) { MlirValue NodeImporter::lookupMappedValue(Value *jitValue) {
auto it = valueMap.find(jitValue); auto it = valueMap.find(jitValue);
assert( assert(it != valueMap.end() &&
it != valueMap.end() &&
"trying to get mapping for jitValue that is not mapped yet!"); "trying to get mapping for jitValue that is not mapped yet!");
return it->second; return it->second;
} }
@ -437,11 +427,12 @@ NodeImporter::lookupMappedValues(c10::ArrayRef<Value*> values) {
return ret; return ret;
} }
MlirBlock torch_mlir::importBlock( MlirBlock
MlirContext context, Block* jitBlock, CreateTerminatorFn createTerminator, torch_mlir::importBlock(MlirContext context, Block *jitBlock,
CreateTerminatorFn createTerminator,
c10::optional<c10::ArrayRef<MlirType>> blockArgTypes, c10::optional<c10::ArrayRef<MlirType>> blockArgTypes,
const ImportOptions &importOptions) { const ImportOptions &importOptions) {
NodeImporter importer(context); NodeImporter importer(context);
return importer.importBlock( return importer.importBlock(jitBlock, createTerminator, blockArgTypes,
jitBlock, createTerminator, blockArgTypes, importOptions); importOptions);
} }

View File

@ -36,8 +36,8 @@ using CreateTerminatorFn =
/// are required to be for correctness. The code will internally attempt to /// are required to be for correctness. The code will internally attempt to
/// adjust the types to the block argument types. /// adjust the types to the block argument types.
/// TODO: Formalize what type conversions are allowed here. /// TODO: Formalize what type conversions are allowed here.
MlirBlock importBlock( MlirBlock
MlirContext context, torch::jit::Block* jitBlock, importBlock(MlirContext context, torch::jit::Block *jitBlock,
CreateTerminatorFn createTerminator, CreateTerminatorFn createTerminator,
c10::optional<c10::ArrayRef<MlirType>> blockArgTypes = c10::nullopt, c10::optional<c10::ArrayRef<MlirType>> blockArgTypes = c10::nullopt,
const ImportOptions &importOptions = {}); const ImportOptions &importOptions = {});

View File

@ -26,8 +26,8 @@
using namespace torch_mlir; using namespace torch_mlir;
static MlirType getMlirTypeForTorchScalarTypeRaw( static MlirType getMlirTypeForTorchScalarTypeRaw(MlirContext context,
MlirContext context, c10::ScalarType scalarType) { c10::ScalarType scalarType) {
using c10::ScalarType; using c10::ScalarType;
switch (scalarType) { switch (scalarType) {
case ScalarType::Byte: case ScalarType::Byte:
@ -69,8 +69,8 @@ static MlirType getMlirTypeForTorchScalarTypeRaw(
} }
} }
MlirType torch_mlir::getMlirTypeForTorchScalarType( MlirType torch_mlir::getMlirTypeForTorchScalarType(MlirLocation loc,
MlirLocation loc, c10::ScalarType scalarType) { c10::ScalarType scalarType) {
auto type = auto type =
getMlirTypeForTorchScalarTypeRaw(mlirLocationGetContext(loc), scalarType); getMlirTypeForTorchScalarTypeRaw(mlirLocationGetContext(loc), scalarType);
if (mlirTypeIsNull(type)) { if (mlirTypeIsNull(type)) {
@ -98,8 +98,8 @@ MlirType torch_mlir::getMlirTypeForTorchScalarType(
// There is no generic way to import custom classes (or their types), so we // There is no generic way to import custom classes (or their types), so we
// have to name match them here (and the relevant code in the ivalue // have to name match them here (and the relevant code in the ivalue
// importer) and create special IR constructs for them. // importer) and create special IR constructs for them.
static MlirType mapCustomClassType( static MlirType mapCustomClassType(MlirContext context, MlirLocation loc,
MlirContext context, MlirLocation loc, const c10::ClassTypePtr& classType) { const c10::ClassTypePtr &classType) {
// If the type is unnamed, it cannot be a custom class. // If the type is unnamed, it cannot be a custom class.
if (!classType->name().has_value()) { if (!classType->name().has_value()) {
return {nullptr}; return {nullptr};
@ -126,8 +126,9 @@ static MlirType mapCustomClassType(
throw mlir_diagnostic_emitted(); throw mlir_diagnostic_emitted();
} }
MlirType torch_mlir::getMlirTypeFromTorchType( MlirType
MlirLocation loc, const c10::TypePtr& torchType, torch_mlir::getMlirTypeFromTorchType(MlirLocation loc,
const c10::TypePtr &torchType,
const ImportOptions &importOptions) { const ImportOptions &importOptions) {
MlirContext context = mlirLocationGetContext(loc); MlirContext context = mlirLocationGetContext(loc);
using c10::TypeKind; using c10::TypeKind;
@ -140,8 +141,7 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
: torchMlirTorchNonValueTensorTypeGet; : torchMlirTorchNonValueTensorTypeGet;
if (importOptions.ignoreExistingTensorShapesAndDtypes) { if (importOptions.ignoreExistingTensorShapesAndDtypes) {
return getMlirTensorType( return getMlirTensorType(context,
context,
/*numSizes=*/-1, /*numSizes=*/-1,
/*optionalSizes=*/nullptr, /*optionalSizes=*/nullptr,
/*optionalDtype=*/{nullptr}); /*optionalDtype=*/{nullptr});
@ -159,8 +159,7 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
auto &sizes = tensorType->symbolic_sizes(); auto &sizes = tensorType->symbolic_sizes();
if (!sizes.rank()) { if (!sizes.rank()) {
// Unranked. // Unranked.
return getMlirTensorType( return getMlirTensorType(context,
context,
/*numSizes=*/-1, /*numSizes=*/-1,
/*optionalSizes=*/nullptr, /*optionalSizes=*/nullptr,
/*optionalDtype=*/ /*optionalDtype=*/
@ -181,8 +180,7 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
// case. So use a dummy data pointer. // case. So use a dummy data pointer.
int64_t dummy; int64_t dummy;
int64_t *dimsData = dims.size() == 0 ? &dummy : dims.data(); int64_t *dimsData = dims.size() == 0 ? &dummy : dims.data();
return getMlirTensorType( return getMlirTensorType(context, dims.size(),
context, dims.size(),
/*optionalSizes=*/dimsData, /*optionalSizes=*/dimsData,
/*optionalDtype=*/ /*optionalDtype=*/
elementType); elementType);
@ -214,8 +212,8 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
containedTypes.push_back( containedTypes.push_back(
getMlirTypeFromTorchType(loc, type, importOptions)); getMlirTypeFromTorchType(loc, type, importOptions));
} }
return torchMlirTorchTupleTypeGet( return torchMlirTorchTupleTypeGet(context, containedTypes.size(),
context, containedTypes.size(), containedTypes.data()); containedTypes.data());
} }
case TypeKind::UnionType: { case TypeKind::UnionType: {
std::vector<MlirType> containedTypes; std::vector<MlirType> containedTypes;
@ -223,8 +221,8 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
torchType->cast<c10::UnionType>()->containedTypes()) { torchType->cast<c10::UnionType>()->containedTypes()) {
containedTypes.push_back(getMlirTypeFromTorchType(loc, type)); containedTypes.push_back(getMlirTypeFromTorchType(loc, type));
} }
return torchMlirTorchUnionTypeGet( return torchMlirTorchUnionTypeGet(context, containedTypes.size(),
context, containedTypes.size(), containedTypes.data()); containedTypes.data());
} }
case TypeKind::ListType: { case TypeKind::ListType: {
return torchMlirTorchListTypeGet(getMlirTypeFromTorchType( return torchMlirTorchListTypeGet(getMlirTypeFromTorchType(
@ -268,8 +266,9 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
} }
} }
MlirType torch_mlir::getFunctionTypeFromSchema( MlirType
MlirContext context, const c10::FunctionSchema& schema, torch_mlir::getFunctionTypeFromSchema(MlirContext context,
const c10::FunctionSchema &schema,
const ImportOptions &importOptions) { const ImportOptions &importOptions) {
MlirLocation loc = mlirLocationUnknownGet(context); MlirLocation loc = mlirLocationUnknownGet(context);
auto mapType = [&](const c10::TypePtr &torchType) { auto mapType = [&](const c10::TypePtr &torchType) {
@ -284,20 +283,17 @@ MlirType torch_mlir::getFunctionTypeFromSchema(
}; };
std::vector<MlirType> inputTypes = std::vector<MlirType> inputTypes =
c10::fmap(schema.arguments(), [&](const c10::Argument& arg) { c10::fmap(schema.arguments(),
return mapType(arg.type()); [&](const c10::Argument &arg) { return mapType(arg.type()); });
});
std::vector<MlirType> outputTypes = std::vector<MlirType> outputTypes =
c10::fmap(schema.returns(), [&](const c10::Argument& arg) { c10::fmap(schema.returns(),
return mapType(arg.type()); [&](const c10::Argument &arg) { return mapType(arg.type()); });
}); return mlirFunctionTypeGet(context, inputTypes.size(), inputTypes.data(),
return mlirFunctionTypeGet( outputTypes.size(), outputTypes.data());
context, inputTypes.size(), inputTypes.data(), outputTypes.size(),
outputTypes.data());
} }
MlirAttribute torch_mlir::convertTensorToMlirElementsAttr( MlirAttribute torch_mlir::convertTensorToMlirElementsAttr(at::Tensor tensor,
at::Tensor tensor, MlirLocation loc) { MlirLocation loc) {
using at::ScalarType; using at::ScalarType;
auto throwUnsupportedTensorError = [&]() { auto throwUnsupportedTensorError = [&]() {
@ -312,8 +308,8 @@ MlirAttribute torch_mlir::convertTensorToMlirElementsAttr(
// The flat number of bytes throws an exception for tensors that are not // The flat number of bytes throws an exception for tensors that are not
// dense and accessible as such. // dense and accessible as such.
at::checkLayout( at::checkLayout(at::CheckedFrom("accessing contiguous"), tensor,
at::CheckedFrom("accessing contiguous"), tensor, c10::Layout::Strided); c10::Layout::Strided);
// Construct the ShapedType. // Construct the ShapedType.
@ -358,8 +354,8 @@ MlirAttribute torch_mlir::convertTensorToMlirElementsAttr(
// the unnecessary copying into an array four times as large. // the unnecessary copying into an array four times as large.
const int8_t *elements = static_cast<const int8_t *>(tensorData); const int8_t *elements = static_cast<const int8_t *>(tensorData);
std::vector<int> tensorDataVector(elements, elements + numElements); std::vector<int> tensorDataVector(elements, elements + numElements);
return mlirDenseElementsAttrBoolGet( return mlirDenseElementsAttrBoolGet(shapedType, numElements,
shapedType, numElements, tensorDataVector.data()); tensorDataVector.data());
} break; } break;
case ScalarType::QInt8: case ScalarType::QInt8:
return mlirDenseElementsAttrInt8Get( return mlirDenseElementsAttrInt8Get(
@ -386,8 +382,9 @@ MlirAttribute torch_mlir::convertTensorToMlirElementsAttr(
return {nullptr}; // Unreachable. return {nullptr}; // Unreachable.
} }
MlirAttribute torch_mlir::importAttribute( MlirAttribute torch_mlir::importAttribute(MlirLocation loc,
MlirLocation loc, torch::jit::Node* node, c10::Symbol symbol) { torch::jit::Node *node,
c10::Symbol symbol) {
MlirContext context = mlirLocationGetContext(loc); MlirContext context = mlirLocationGetContext(loc);
auto kind = node->kindOf(symbol); auto kind = node->kindOf(symbol);
switch (kind) { switch (kind) {
@ -396,8 +393,8 @@ MlirAttribute torch_mlir::importAttribute(
// do that. // do that.
return mlirIntegerAttrGet(mlirIntegerTypeGet(context, 64), node->i(symbol)); return mlirIntegerAttrGet(mlirIntegerTypeGet(context, 64), node->i(symbol));
case torch::jit::AttributeKind::f: case torch::jit::AttributeKind::f:
return mlirFloatAttrDoubleGet( return mlirFloatAttrDoubleGet(context, mlirF64TypeGet(context),
context, mlirF64TypeGet(context), node->f(symbol)); node->f(symbol));
case torch::jit::AttributeKind::s: case torch::jit::AttributeKind::s:
return mlirStringAttrGet(context, toMlirStringRef(node->s(symbol))); return mlirStringAttrGet(context, toMlirStringRef(node->s(symbol)));
case torch::jit::AttributeKind::t: case torch::jit::AttributeKind::t:
@ -411,8 +408,8 @@ MlirAttribute torch_mlir::importAttribute(
} }
} }
MlirLocation torch_mlir::getMlirLocationFromNode( MlirLocation torch_mlir::getMlirLocationFromNode(MlirContext context,
MlirContext context, torch::jit::Node* node) { torch::jit::Node *node) {
MlirLocation loc = mlirLocationUnknownGet(context); MlirLocation loc = mlirLocationUnknownGet(context);
if (node->hasAttribute(c10::Symbol::attr("source_files"))) { if (node->hasAttribute(c10::Symbol::attr("source_files"))) {
@ -424,8 +421,8 @@ MlirLocation torch_mlir::getMlirLocationFromNode(
for (const auto i : c10::irange(sourceFiles.size())) { for (const auto i : c10::irange(sourceFiles.size())) {
MlirLocation newLoc = mlirLocationNameGet( MlirLocation newLoc = mlirLocationNameGet(
context, toMlirStringRef(functions[i]), context, toMlirStringRef(functions[i]),
mlirLocationFileLineColGet( mlirLocationFileLineColGet(context, toMlirStringRef(sourceFiles[i]),
context, toMlirStringRef(sourceFiles[i]), lineNumbers[i], lineNumbers[i],
0 /* column is not available */ 0 /* column is not available */
)); ));
loc = (i == 0 ? newLoc : mlirLocationCallSiteGet(newLoc, loc)); loc = (i == 0 ? newLoc : mlirLocationCallSiteGet(newLoc, loc));
@ -462,8 +459,9 @@ MlirLocation torch_mlir::getMlirLocationFromNode(
return loc; return loc;
} }
std::vector<MlirType> torch_mlir::getMlirTypesFromValues( std::vector<MlirType>
MlirLocation loc, c10::ArrayRef<torch::jit::Value*> values, torch_mlir::getMlirTypesFromValues(MlirLocation loc,
c10::ArrayRef<torch::jit::Value *> values,
const ImportOptions &importOptions) { const ImportOptions &importOptions) {
std::vector<MlirType> ret; std::vector<MlirType> ret;
for (auto value : values) { for (auto value : values) {
@ -507,9 +505,10 @@ std::vector<MlirValue> torch_mlir::adjustStaticInformationForValues(
return ret; return ret;
} }
MlirOperation torch_mlir::createOperationFromSchema( MlirOperation
MlirBlock appendToBlock, MlirLocation loc, torch_mlir::createOperationFromSchema(MlirBlock appendToBlock, MlirLocation loc,
const c10::FunctionSchema& schema, c10::ArrayRef<MlirType> resultTypes, const c10::FunctionSchema &schema,
c10::ArrayRef<MlirType> resultTypes,
c10::ArrayRef<MlirValue> operands) { c10::ArrayRef<MlirValue> operands) {
MlirContext context = mlirLocationGetContext(loc); MlirContext context = mlirLocationGetContext(loc);
@ -527,8 +526,8 @@ MlirOperation torch_mlir::createOperationFromSchema(
std::string opName = "torch." + opNameSuffix; std::string opName = "torch." + opNameSuffix;
// If we have a registered op, use it! // If we have a registered op, use it!
if (mlirContextIsRegisteredOperation(context, toMlirStringRef(opName))) { if (mlirContextIsRegisteredOperation(context, toMlirStringRef(opName))) {
return createMlirOperationAtEnd( return createMlirOperationAtEnd(appendToBlock, opName, loc, resultTypes,
appendToBlock, opName, loc, resultTypes, operands); operands);
} }
// Oops, no registered op -- create an opaque wrapper so that import can // Oops, no registered op -- create an opaque wrapper so that import can
// still succeed. This helps a common use case of filling out registered ops // still succeed. This helps a common use case of filling out registered ops

View File

@ -38,35 +38,36 @@ public:
/// for Python code). /// for Python code).
/// ///
/// Returns a null type on failure and emits a diagnostic. /// Returns a null type on failure and emits a diagnostic.
MlirType MlirType getMlirTypeForTorchScalarType(MlirLocation loc,
getMlirTypeForTorchScalarType(MlirLocation loc, c10::ScalarType scalarType); c10::ScalarType scalarType);
/// Maps a torch type to a corresponding MlirType. Returns a null type /// Maps a torch type to a corresponding MlirType. Returns a null type
/// on failure and emits a diagnostic. /// on failure and emits a diagnostic.
MlirType getMlirTypeFromTorchType( MlirType getMlirTypeFromTorchType(MlirLocation loc,
MlirLocation loc, const c10::TypePtr& torchType, const c10::TypePtr &torchType,
const ImportOptions &importOptions = {}); const ImportOptions &importOptions = {});
/// Creates a FunctionType suitable for expressing the signature of `schema`. /// Creates a FunctionType suitable for expressing the signature of `schema`.
/// ///
/// This can differ from the type inferred from the block of a /// This can differ from the type inferred from the block of a
/// torch::jit::Function due to derefinement and refinement of tensor types. /// torch::jit::Function due to derefinement and refinement of tensor types.
MlirType getFunctionTypeFromSchema( MlirType getFunctionTypeFromSchema(MlirContext context,
MlirContext context, const c10::FunctionSchema& schema, const c10::FunctionSchema &schema,
const ImportOptions &importOptions = {}); const ImportOptions &importOptions = {});
/// Creates an appropriate MlirAttribute that holds the same values as `tensor`. /// Creates an appropriate MlirAttribute that holds the same values as `tensor`.
MlirAttribute MlirAttribute convertTensorToMlirElementsAttr(at::Tensor tensor,
convertTensorToMlirElementsAttr(at::Tensor tensor, MlirLocation loc); MlirLocation loc);
MlirAttribute MlirAttribute importAttribute(MlirLocation loc, torch::jit::Node *node,
importAttribute(MlirLocation loc, torch::jit::Node* node, c10::Symbol symbol); c10::Symbol symbol);
MlirLocation MlirLocation getMlirLocationFromNode(MlirContext context,
getMlirLocationFromNode(MlirContext context, torch::jit::Node* node); torch::jit::Node *node);
std::vector<MlirType> getMlirTypesFromValues( std::vector<MlirType>
MlirLocation loc, c10::ArrayRef<torch::jit::Value*> values, getMlirTypesFromValues(MlirLocation loc,
c10::ArrayRef<torch::jit::Value *> values,
const ImportOptions &importOptions = {}); const ImportOptions &importOptions = {});
std::vector<MlirValue> adjustStaticInformationForValues( std::vector<MlirValue> adjustStaticInformationForValues(
@ -78,9 +79,10 @@ std::vector<MlirValue> adjustStaticInformationForValues(
/// ///
/// The primary difficulty here is doing the appropriate name munging and /// The primary difficulty here is doing the appropriate name munging and
/// checking if the have a registered op. /// checking if the have a registered op.
MlirOperation createOperationFromSchema( MlirOperation createOperationFromSchema(MlirBlock appendToBlock,
MlirBlock appendToBlock, MlirLocation loc, MlirLocation loc,
const c10::FunctionSchema& schema, c10::ArrayRef<MlirType> resultTypes, const c10::FunctionSchema &schema,
c10::ArrayRef<MlirType> resultTypes,
c10::ArrayRef<MlirValue> operands); c10::ArrayRef<MlirValue> operands);
} // namespace torch_mlir } // namespace torch_mlir

View File

@ -1,30 +1,3 @@
# Static library with core functionality.
# We can't use a shared library here, due to issues with linking on macOS-arm64 (the library itself won't build)
# For details, see: https://github.com/llvm/torch-mlir/runs/7919012376
add_library(TorchMLIRJITIRImporter STATIC
class_annotator.cpp
function_importer.cpp
node_importer.cpp
ivalue_importer.cpp
torch_to_mlir_utils.cpp
)
target_link_libraries(TorchMLIRJITIRImporter
TorchMLIRAggregateCAPI
${TORCH_LIBRARIES}
)
# Includes are relative to the csrc dir (i.e. #include "jit_ir_importer/...")
target_include_directories(TorchMLIRJITIRImporter PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/..
)
set_target_properties(TorchMLIRJITIRImporter PROPERTIES
LIBRARY_OUTPUT_DIRECTORY "${TORCH_MLIR_PYTHON_PACKAGES_DIR}/torch_mlir/torch_mlir/_mlir_libs"
OUTPUT_NAME lib_jit_ir_importer
PREFIX ""
SUFFIX ".a"
CXX_VISIBILITY_PRESET "default"
COMPILE_FLAGS "${TORCH_CXXFLAGS}"
)
# Separate Pybind MODULE due to issues with a SHARED library. # Separate Pybind MODULE due to issues with a SHARED library.
# https://github.com/llvm/torch-mlir/issues/1154 # https://github.com/llvm/torch-mlir/issues/1154
add_library(TorchMLIRJITIRImporterPybind MODULE add_library(TorchMLIRJITIRImporterPybind MODULE

View File

@ -8,7 +8,7 @@
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#include "class_annotator_pybind.h" #include "class_annotator_pybind.h"
#include "class_annotator.h" #include "jit_ir_importer/class_annotator.h"
#include <torch/csrc/Dtype.h> #include <torch/csrc/Dtype.h>
#include <torch/csrc/utils/pybind.h> #include <torch/csrc/utils/pybind.h>

View File

@ -8,7 +8,7 @@
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#include "import_options_pybind.h" #include "import_options_pybind.h"
#include "import_options.h" #include "jit_ir_importer/import_options.h"
namespace py = pybind11; namespace py = pybind11;

View File

@ -9,9 +9,9 @@
#include "module_builder.h" #include "module_builder.h"
#include "function_importer.h" #include "jit_ir_importer/function_importer.h"
#include "ivalue_importer.h" #include "jit_ir_importer/ivalue_importer.h"
#include "mlir_utils.h" #include "jit_ir_importer/mlir_utils.h"
#include "mlir-c/Bindings/Python/Interop.h" #include "mlir-c/Bindings/Python/Interop.h"
#include "mlir-c/BuiltinAttributes.h" #include "mlir-c/BuiltinAttributes.h"

View File

@ -10,7 +10,7 @@
#ifndef TORCHMLIRJITIRIMPORTER_CSRC_BUILDER_H #ifndef TORCHMLIRJITIRIMPORTER_CSRC_BUILDER_H
#define TORCHMLIRJITIRIMPORTER_CSRC_BUILDER_H #define TORCHMLIRJITIRIMPORTER_CSRC_BUILDER_H
#include "class_annotator.h" #include "jit_ir_importer/class_annotator.h"
#include "mlir-c/IR.h" #include "mlir-c/IR.h"