mirror of https://github.com/llvm/torch-mlir
[MLIR][TORCH] Add decomposition for aten.randn_like op
This commit decomposes aten.randn_like op into aten.randn.generator op. Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>pull/1776/head snapshot-20230118.722
parent
999fd9036b
commit
f9d59eb500
|
@ -787,4 +787,6 @@ LTC_XFAIL_SET = {
|
||||||
"ElementwisePreluModule_basic",
|
"ElementwisePreluModule_basic",
|
||||||
"VarMeanBiasedModule_basic",
|
"VarMeanBiasedModule_basic",
|
||||||
"VarMeanUnbiasedModule_basic",
|
"VarMeanUnbiasedModule_basic",
|
||||||
|
"RandnLikeModule_basic",
|
||||||
|
"RandnLikeDtypeModule_basic",
|
||||||
}
|
}
|
||||||
|
|
|
@ -3771,6 +3771,34 @@ def Torch_AtenRandnGeneratorOp : Torch_Op<"aten.randn.generator", [
|
||||||
}];
|
}];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def Torch_AtenRandnLikeOp : Torch_Op<"aten.randn_like", [
|
||||||
|
AllowsTypeRefinement,
|
||||||
|
HasValueSemantics,
|
||||||
|
ReadOnly
|
||||||
|
]> {
|
||||||
|
let summary = "Generated op for `aten::randn_like : (Tensor, int?, int?, Device?, bool?, int?) -> (Tensor)`";
|
||||||
|
let arguments = (ins
|
||||||
|
AnyTorchTensorType:$self,
|
||||||
|
AnyTorchOptionalIntType:$dtype,
|
||||||
|
AnyTorchOptionalIntType:$layout,
|
||||||
|
AnyTorchOptionalDeviceType:$device,
|
||||||
|
AnyTorchOptionalBoolType:$pin_memory,
|
||||||
|
AnyTorchOptionalIntType:$memory_format
|
||||||
|
);
|
||||||
|
let results = (outs
|
||||||
|
AnyTorchTensorType:$result
|
||||||
|
);
|
||||||
|
let hasCustomAssemblyFormat = 1;
|
||||||
|
let extraClassDefinition = [{
|
||||||
|
ParseResult AtenRandnLikeOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||||
|
return parseDefaultTorchOp(parser, result, 6, 1);
|
||||||
|
}
|
||||||
|
void AtenRandnLikeOp::print(OpAsmPrinter &printer) {
|
||||||
|
printDefaultTorchOp(printer, *this, 6, 1);
|
||||||
|
}
|
||||||
|
}];
|
||||||
|
}
|
||||||
|
|
||||||
def Torch_AtenTriuOp : Torch_Op<"aten.triu", [
|
def Torch_AtenTriuOp : Torch_Op<"aten.triu", [
|
||||||
AllowsTypeRefinement,
|
AllowsTypeRefinement,
|
||||||
HasValueSemantics,
|
HasValueSemantics,
|
||||||
|
|
|
@ -6639,6 +6639,9 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" func.func @\"__torch_mlir_shape_fn.aten.rand_like\"(%arg0: !torch.list<int>, %arg1: !torch.optional<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<Device>, %arg4: !torch.optional<bool>, %arg5: !torch.optional<int>) -> !torch.list<int> {\n"
|
" func.func @\"__torch_mlir_shape_fn.aten.rand_like\"(%arg0: !torch.list<int>, %arg1: !torch.optional<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<Device>, %arg4: !torch.optional<bool>, %arg5: !torch.optional<int>) -> !torch.list<int> {\n"
|
||||||
" return %arg0 : !torch.list<int>\n"
|
" return %arg0 : !torch.list<int>\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_shape_fn.aten.randn_like\"(%arg0: !torch.list<int>, %arg1: !torch.optional<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<Device>, %arg4: !torch.optional<bool>, %arg5: !torch.optional<int>) -> !torch.list<int> {\n"
|
||||||
|
" return %arg0 : !torch.list<int>\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_shape_fn.aten.randint.low\"(%arg0: !torch.int, %arg1: !torch.int, %arg2: !torch.list<int>, %arg3: !torch.optional<int>, %arg4: !torch.optional<int>, %arg5: !torch.optional<Device>, %arg6: !torch.optional<bool>) -> !torch.list<int> {\n"
|
" func.func @\"__torch_mlir_shape_fn.aten.randint.low\"(%arg0: !torch.int, %arg1: !torch.int, %arg2: !torch.list<int>, %arg3: !torch.optional<int>, %arg4: !torch.optional<int>, %arg5: !torch.optional<Device>, %arg6: !torch.optional<bool>) -> !torch.list<int> {\n"
|
||||||
" return %arg2 : !torch.list<int>\n"
|
" return %arg2 : !torch.list<int>\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
|
|
@ -3535,6 +3535,40 @@ public:
|
||||||
};
|
};
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
// Decompose `aten.randn_like` op into `aten.randn.generator` op.
|
||||||
|
class DecomposeAtenRandnLikeOp : public OpRewritePattern<AtenRandnLikeOp> {
|
||||||
|
public:
|
||||||
|
using OpRewritePattern::OpRewritePattern;
|
||||||
|
LogicalResult matchAndRewrite(AtenRandnLikeOp op,
|
||||||
|
PatternRewriter &rewriter) const override {
|
||||||
|
// Only `none`, `contiguous` and `preserve` memory_format is supported.
|
||||||
|
if (!op.getMemoryFormat().getType().isa<Torch::NoneType>()) {
|
||||||
|
int64_t memoryFormat;
|
||||||
|
if (!matchPattern(op.getMemoryFormat(),
|
||||||
|
m_TorchConstantInt(&memoryFormat)))
|
||||||
|
return rewriter.notifyMatchFailure(
|
||||||
|
op, "unimplemented: the memory format should be specified in "
|
||||||
|
"an integer constant");
|
||||||
|
if (memoryFormat != torch_upstream::MemoryFormat::Contiguous &&
|
||||||
|
memoryFormat != torch_upstream::MemoryFormat::Preserve)
|
||||||
|
return rewriter.notifyMatchFailure(
|
||||||
|
op, "unimplemented: only none, contiguous and preserve "
|
||||||
|
"memory_format is supported");
|
||||||
|
}
|
||||||
|
Value none = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
|
||||||
|
auto sizeListType =
|
||||||
|
Torch::ListType::get(Torch::IntType::get(op.getContext()));
|
||||||
|
Value sizeList =
|
||||||
|
rewriter.create<AtenSizeOp>(op.getLoc(), sizeListType, op.getSelf());
|
||||||
|
rewriter.replaceOpWithNewOp<AtenRandnGeneratorOp>(
|
||||||
|
op, op.getType(), sizeList, /*generator=*/none, op.getDtype(),
|
||||||
|
op.getLayout(), op.getDevice(), op.getPinMemory());
|
||||||
|
return success();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
class DecomposeAtenVarMeanOp : public OpRewritePattern<AtenVarMeanOp> {
|
class DecomposeAtenVarMeanOp : public OpRewritePattern<AtenVarMeanOp> {
|
||||||
public:
|
public:
|
||||||
|
@ -3704,6 +3738,7 @@ public:
|
||||||
addPatternIfTargetOpIsIllegal<DecomposePrimsSqrtOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposePrimsSqrtOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnGeneratorOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnGeneratorOp>(patterns);
|
||||||
|
addPatternIfTargetOpIsIllegal<DecomposeAtenRandnLikeOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenVarMeanOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenVarMeanOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluOp>(patterns);
|
||||||
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluBackwardOp>(patterns);
|
addPatternIfTargetOpIsIllegal<DecomposeAtenLeakyReluBackwardOp>(patterns);
|
||||||
|
|
|
@ -442,6 +442,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
||||||
target.addIllegalOp<PrimsSqrtOp>();
|
target.addIllegalOp<PrimsSqrtOp>();
|
||||||
target.addIllegalOp<AtenRandnOp>();
|
target.addIllegalOp<AtenRandnOp>();
|
||||||
target.addIllegalOp<AtenRandnGeneratorOp>();
|
target.addIllegalOp<AtenRandnGeneratorOp>();
|
||||||
|
target.addIllegalOp<AtenRandnLikeOp>();
|
||||||
target.addIllegalOp<AtenVarMeanOp>();
|
target.addIllegalOp<AtenVarMeanOp>();
|
||||||
for (std::string opName : backendLegalOps) {
|
for (std::string opName : backendLegalOps) {
|
||||||
target.addLegalOp(OperationName(opName, context));
|
target.addLegalOp(OperationName(opName, context));
|
||||||
|
|
|
@ -1039,6 +1039,9 @@ void TypeAnalysis::visitOperation(Operation *op,
|
||||||
} else if (auto randLike = dyn_cast<AtenRandLikeOp>(op)) {
|
} else if (auto randLike = dyn_cast<AtenRandLikeOp>(op)) {
|
||||||
visitConstantTensorAllocLikeOp<AtenRandLikeOp>(randLike, operands);
|
visitConstantTensorAllocLikeOp<AtenRandLikeOp>(randLike, operands);
|
||||||
return;
|
return;
|
||||||
|
} else if (auto randLike = dyn_cast<AtenRandnLikeOp>(op)) {
|
||||||
|
visitConstantTensorAllocLikeOp<AtenRandnLikeOp>(randLike, operands);
|
||||||
|
return;
|
||||||
} else if (auto toCopy = dyn_cast<Aten_ToCopyOp>(op)) {
|
} else if (auto toCopy = dyn_cast<Aten_ToCopyOp>(op)) {
|
||||||
visitConstantTensorAllocLikeOp<Aten_ToCopyOp>(toCopy, operands);
|
visitConstantTensorAllocLikeOp<Aten_ToCopyOp>(toCopy, operands);
|
||||||
return;
|
return;
|
||||||
|
|
|
@ -616,6 +616,9 @@ def aten〇cumsum〡shape(self: List[int], dim: int, dtype: Optional[int] = None
|
||||||
def aten〇rand_like〡shape(self: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None, memory_format: Optional[int] = None) -> List[int]:
|
def aten〇rand_like〡shape(self: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None, memory_format: Optional[int] = None) -> List[int]:
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
def aten〇randn_like〡shape(self: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None, memory_format: Optional[int] = None) -> List[int]:
|
||||||
|
return self
|
||||||
|
|
||||||
def aten〇randint〇low〡shape(low: int, high: int, size: List[int], dtype: Optional[int] = 4, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> List[int]:
|
def aten〇randint〇low〡shape(low: int, high: int, size: List[int], dtype: Optional[int] = 4, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> List[int]:
|
||||||
return size
|
return size
|
||||||
|
|
||||||
|
|
|
@ -335,6 +335,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
||||||
emit_with_mutating_variants("aten::bernoulli.Tensor : (Tensor, Tensor, Generator?) -> (Tensor)")
|
emit_with_mutating_variants("aten::bernoulli.Tensor : (Tensor, Tensor, Generator?) -> (Tensor)")
|
||||||
emit("aten::randn : (int[], int?, int?, Device?, bool?) -> (Tensor)")
|
emit("aten::randn : (int[], int?, int?, Device?, bool?) -> (Tensor)")
|
||||||
emit("aten::randn.generator : (int[], Generator?, int?, int?, Device?, bool?) -> (Tensor)")
|
emit("aten::randn.generator : (int[], Generator?, int?, int?, Device?, bool?) -> (Tensor)")
|
||||||
|
emit("aten::randn_like : (Tensor, int?, int?, Device?, bool?, int?) -> (Tensor)")
|
||||||
|
|
||||||
emit_with_mutating_variants("aten::triu : (Tensor, int) -> (Tensor)")
|
emit_with_mutating_variants("aten::triu : (Tensor, int) -> (Tensor)")
|
||||||
emit_with_mutating_variants("aten::round : (Tensor) -> (Tensor)", has_folder=True)
|
emit_with_mutating_variants("aten::round : (Tensor) -> (Tensor)", has_folder=True)
|
||||||
|
|
|
@ -364,3 +364,46 @@ class RandnGeneratorModule(torch.nn.Module):
|
||||||
@register_test_case(module_factory=lambda: RandnGeneratorModule())
|
@register_test_case(module_factory=lambda: RandnGeneratorModule())
|
||||||
def RandnGeneratorModule_basic(module, tu: TestUtils):
|
def RandnGeneratorModule_basic(module, tu: TestUtils):
|
||||||
module.forward()
|
module.forward()
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
class RandnLikeModule(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1, -1], torch.float64, True),
|
||||||
|
])
|
||||||
|
def forward(self, x):
|
||||||
|
a = torch.ops.aten.randn_like(x)
|
||||||
|
std = torch.std(a)
|
||||||
|
return std
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: RandnLikeModule())
|
||||||
|
def RandnLikeModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(4, 512, 1024).double())
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
class RandnLikeDtypeModule(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1], torch.float64, True),
|
||||||
|
])
|
||||||
|
def forward(self, x):
|
||||||
|
a = torch.ops.aten.randn_like(x, dtype=torch.float32)
|
||||||
|
std = torch.std(a)
|
||||||
|
return std
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: RandnLikeDtypeModule())
|
||||||
|
def RandnLikeDtypeModule_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(256, 1024).double())
|
||||||
|
|
Loading…
Reference in New Issue