mirror of https://github.com/llvm/torch-mlir
Implement lowering of torch.aten.remainder.Tensor (#2763)
Closes nod-ai/SHARK-Turbine#349pull/2775/head
parent
4de4d38b87
commit
faa4517e83
|
@ -1195,6 +1195,26 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
if (auto remTensor = dyn_cast<AtenRemainderTensorOp>(op)) {
|
||||||
|
Type newResultType = converter->convertType(remTensor.getType())
|
||||||
|
.cast<RankedTensorType>()
|
||||||
|
.getElementType();
|
||||||
|
|
||||||
|
Value self = convertScalarToDtype(b, loc, payloadArgs[0], newResultType);
|
||||||
|
Value other = convertScalarToDtype(b, loc, payloadArgs[1], newResultType);
|
||||||
|
Value result;
|
||||||
|
|
||||||
|
if (newResultType.isa<mlir::FloatType>()) {
|
||||||
|
result = b.create<arith::RemFOp>(loc, self, other);
|
||||||
|
} else if (newResultType.isa<mlir::IntegerType>()) {
|
||||||
|
result = b.create<arith::RemSIOp>(loc, self, other);
|
||||||
|
} else {
|
||||||
|
remTensor.emitError(
|
||||||
|
"Unsupported type encountered for AtenRemainderTensorOp.");
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
if (auto reciprocal = dyn_cast<AtenReciprocalOp>(op)) {
|
if (auto reciprocal = dyn_cast<AtenReciprocalOp>(op)) {
|
||||||
Type dtype = converter->convertType(reciprocal.getType())
|
Type dtype = converter->convertType(reciprocal.getType())
|
||||||
.cast<RankedTensorType>()
|
.cast<RankedTensorType>()
|
||||||
|
@ -1457,8 +1477,8 @@ public:
|
||||||
AtenMulScalarOp, AtenLogOp, AtenErfOp, AtenSqrtOp, AtenFloorOp,
|
AtenMulScalarOp, AtenLogOp, AtenErfOp, AtenSqrtOp, AtenFloorOp,
|
||||||
AtenPowScalarOp, AtenPowTensorScalarOp, AtenPowTensorTensorOp,
|
AtenPowScalarOp, AtenPowTensorScalarOp, AtenPowTensorTensorOp,
|
||||||
AtenLog2Op, AtenLog10Op, AtenLog1pOp, AtenRsqrtOp, AtenDivScalarOp,
|
AtenLog2Op, AtenLog10Op, AtenLog1pOp, AtenRsqrtOp, AtenDivScalarOp,
|
||||||
AtenRemainderScalarOp, AtenAbsOp, AtenReciprocalOp,
|
AtenRemainderScalarOp, AtenRemainderTensorOp, AtenAbsOp,
|
||||||
AtenBitwiseAndTensorOp, AtenBitwiseAndScalarOp,
|
AtenReciprocalOp, AtenBitwiseAndTensorOp, AtenBitwiseAndScalarOp,
|
||||||
AtenBitwiseOrTensorOp, AtenBitwiseXorTensorOp,
|
AtenBitwiseOrTensorOp, AtenBitwiseXorTensorOp,
|
||||||
AtenBitwiseLeftShiftTensorOp, AtenBitwiseRightShiftTensorOp,
|
AtenBitwiseLeftShiftTensorOp, AtenBitwiseRightShiftTensorOp,
|
||||||
AtenGtScalarOp, AtenGeScalarOp, AtenEqScalarOp, AtenLtScalarOp,
|
AtenGtScalarOp, AtenGeScalarOp, AtenEqScalarOp, AtenLtScalarOp,
|
||||||
|
@ -1471,7 +1491,8 @@ public:
|
||||||
AtenLogicalXorOp, AtenLogicalNotOp, AtenIsinfOp, AtenTriuOp,
|
AtenLogicalXorOp, AtenLogicalNotOp, AtenIsinfOp, AtenTriuOp,
|
||||||
AtenTrilOp, AtenBitwiseNotOp, AtenRoundOp, AtenFillScalarOp,
|
AtenTrilOp, AtenBitwiseNotOp, AtenRoundOp, AtenFillScalarOp,
|
||||||
AtenFillTensorOp, AtenAtanOp, AtenAcosOp, AtenRealOp, AtenImagOp,
|
AtenFillTensorOp, AtenAtanOp, AtenAcosOp, AtenRealOp, AtenImagOp,
|
||||||
AtenDequantizeSelfOp, AtenDequantizeTensorOp, AtenQuantizePerTensorOp>(op))
|
AtenDequantizeSelfOp, AtenDequantizeTensorOp,
|
||||||
|
AtenQuantizePerTensorOp>(op))
|
||||||
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
|
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
|
||||||
|
|
||||||
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
||||||
|
@ -2239,9 +2260,10 @@ void mlir::torch::torch_to_linalg::populateUncategorizedPatternsAndLegality(
|
||||||
AtenHardtanhBackwardOp, AtenCloneOp, AtenSinOp, AtenCosOp, AtenNeScalarOp,
|
AtenHardtanhBackwardOp, AtenCloneOp, AtenSinOp, AtenCosOp, AtenNeScalarOp,
|
||||||
AtenMaskedFillTensorOp, AtenLogicalOrOp, AtenLogicalAndOp, AtenAtanOp,
|
AtenMaskedFillTensorOp, AtenLogicalOrOp, AtenLogicalAndOp, AtenAtanOp,
|
||||||
AtenAcosOp, AtenLogicalXorOp, AtenLogicalNotOp, AtenIsinfOp, AtenTriuOp,
|
AtenAcosOp, AtenLogicalXorOp, AtenLogicalNotOp, AtenIsinfOp, AtenTriuOp,
|
||||||
AtenTrilOp, AtenRemainderScalarOp, AtenBitwiseNotOp, AtenRoundOp,
|
AtenTrilOp, AtenRemainderScalarOp, AtenRemainderTensorOp,
|
||||||
AtenFillScalarOp, AtenFillTensorOp, AtenRealOp, AtenImagOp,
|
AtenBitwiseNotOp, AtenRoundOp, AtenFillScalarOp, AtenFillTensorOp,
|
||||||
AtenDequantizeSelfOp, AtenDequantizeTensorOp, AtenQuantizePerTensorOp>();
|
AtenRealOp, AtenImagOp, AtenDequantizeSelfOp, AtenDequantizeTensorOp,
|
||||||
|
AtenQuantizePerTensorOp>();
|
||||||
patterns.add<ConvertElementwiseOp>(typeConverter, context);
|
patterns.add<ConvertElementwiseOp>(typeConverter, context);
|
||||||
target.addIllegalOp<AtenNllLossForwardOp>();
|
target.addIllegalOp<AtenNllLossForwardOp>();
|
||||||
patterns.add<ConvertAtenDetachOp>(typeConverter, context);
|
patterns.add<ConvertAtenDetachOp>(typeConverter, context);
|
||||||
|
|
|
@ -6758,6 +6758,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_shape_fn.aten.remainder.Tensor\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
|
||||||
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
|
" return %0 : !torch.list<int>\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_shape_fn.aten.floor_divide.Scalar\"(%arg0: !torch.list<int>, %arg1: !torch.float) -> !torch.list<int> {\n"
|
" func.func @\"__torch_mlir_shape_fn.aten.floor_divide.Scalar\"(%arg0: !torch.list<int>, %arg1: !torch.float) -> !torch.list<int> {\n"
|
||||||
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
|
||||||
" return %0 : !torch.list<int>\n"
|
" return %0 : !torch.list<int>\n"
|
||||||
|
@ -10725,6 +10729,14 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
||||||
" %4 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%1, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
" %4 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%1, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
||||||
" return %4 : !torch.int\n"
|
" return %4 : !torch.int\n"
|
||||||
" }\n"
|
" }\n"
|
||||||
|
" func.func @\"__torch_mlir_dtype_fn.aten.remainder.Tensor\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||||
|
" %0:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
|
" %1:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||||
|
" %2 = torch.prim.ListConstruct %1#0, %0#0 : (!torch.int, !torch.int) -> !torch.list<optional<int>>\n"
|
||||||
|
" %3 = torch.prim.ListConstruct %1#1, %0#1 : (!torch.int, !torch.int) -> !torch.list<int>\n"
|
||||||
|
" %4 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%2, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
||||||
|
" return %4 : !torch.int\n"
|
||||||
|
" }\n"
|
||||||
" func.func @\"__torch_mlir_dtype_fn.aten.baddbmm\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>, %arg2: !torch.tuple<int, int>, %arg3: !torch.number, %arg4: !torch.number) -> !torch.int {\n"
|
" func.func @\"__torch_mlir_dtype_fn.aten.baddbmm\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>, %arg2: !torch.tuple<int, int>, %arg3: !torch.number, %arg4: !torch.number) -> !torch.int {\n"
|
||||||
" %none = torch.constant.none\n"
|
" %none = torch.constant.none\n"
|
||||||
" %str = torch.constant.str \"AssertionError: \"\n"
|
" %str = torch.constant.str \"AssertionError: \"\n"
|
||||||
|
|
|
@ -383,6 +383,9 @@ def aten〇div〇Scalar〡shape(self: List[int], other: float) -> List[int]:
|
||||||
def aten〇remainder〇Scalar〡shape(self: List[int], other: float) -> List[int]:
|
def aten〇remainder〇Scalar〡shape(self: List[int], other: float) -> List[int]:
|
||||||
return upstream_shape_functions.unary(self)
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
|
def aten〇remainder〇Tensor〡shape(self: List[int], other: List[int]) -> List[int]:
|
||||||
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
def aten〇floor_divide〇Scalar〡shape(self: List[int], other: float) -> List[int]:
|
def aten〇floor_divide〇Scalar〡shape(self: List[int], other: float) -> List[int]:
|
||||||
return upstream_shape_functions.unary(self)
|
return upstream_shape_functions.unary(self)
|
||||||
|
|
||||||
|
@ -3224,6 +3227,14 @@ def aten〇remainder〇Scalar〡dtype(self_rank_dtype: Tuple[int, int], other: U
|
||||||
dtypes = [self_dtype, get_dtype_of_scalar(other)]
|
dtypes = [self_dtype, get_dtype_of_scalar(other)]
|
||||||
return promote_dtypes(ranks, dtypes)
|
return promote_dtypes(ranks, dtypes)
|
||||||
|
|
||||||
|
@check_dtype_function(_check_two_tensor_op())
|
||||||
|
def aten〇remainder〇Tensor〡dtype(self_rank_dtype: Tuple[int, int], other_rank_dtype: Tuple[int, int]) -> int:
|
||||||
|
other_rank, other_dtype = other_rank_dtype
|
||||||
|
self_rank, self_dtype = self_rank_dtype
|
||||||
|
ranks: List[Optional[int]] = [self_rank, other_rank]
|
||||||
|
dtypes = [self_dtype, other_dtype]
|
||||||
|
return promote_dtypes(ranks, dtypes)
|
||||||
|
|
||||||
# TODO: This should be fixed by switching to FakeTensor instead of Meta tensor
|
# TODO: This should be fixed by switching to FakeTensor instead of Meta tensor
|
||||||
@check_dtype_function(
|
@check_dtype_function(
|
||||||
_check_tensors_with_the_same_dtype(tensor_shapes=[(1, 1, 1), (1, 1, 1), (1, 1, 1)], tensor_device="cpu", error_types={torch.bool}) +
|
_check_tensors_with_the_same_dtype(tensor_shapes=[(1, 1, 1), (1, 1, 1), (1, 1, 1)], tensor_device="cpu", error_types={torch.bool}) +
|
||||||
|
|
|
@ -2265,6 +2265,73 @@ def ElementwiseRemainderScalarModule_Bool_basic(module, tu: TestUtils):
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class ElementwiseRemainderTensorModule_Int_Float(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1], torch.int32, True),
|
||||||
|
([-1, -1], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, a, b):
|
||||||
|
return torch.remainder(a, b)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ElementwiseRemainderTensorModule_Int_Float())
|
||||||
|
def ElementwiseRemainderTensorModule_Int_Float_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.randint(3, 4, high=10).to(torch.int32), tu.rand(3, 4, high=10))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
|
class ElementwiseRemainderTensorModule_Float(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1], torch.float32, True),
|
||||||
|
([-1, -1], torch.float32, True),
|
||||||
|
])
|
||||||
|
def forward(self, a, b):
|
||||||
|
return torch.remainder(a, b)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ElementwiseRemainderTensorModule_Float())
|
||||||
|
def ElementwiseRemainderTensorModule_Float_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.rand(3, 4, high=10), tu.rand(3, 4, high=10))
|
||||||
|
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
class ElementwiseRemainderTensorModule_Int(torch.nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@export
|
||||||
|
@annotate_args([
|
||||||
|
None,
|
||||||
|
([-1, -1], torch.int32, True),
|
||||||
|
([-1, -1], torch.int32, True),
|
||||||
|
])
|
||||||
|
def forward(self, a, b):
|
||||||
|
return torch.remainder(a, b)
|
||||||
|
|
||||||
|
|
||||||
|
@register_test_case(module_factory=lambda: ElementwiseRemainderTensorModule_Int())
|
||||||
|
def ElementwiseRemainderTensorModule_Int_basic(module, tu: TestUtils):
|
||||||
|
module.forward(tu.randint(3, 4, high=10, dtype=torch.int32), tu.randint(3, 4, high=10, dtype=torch.int32))
|
||||||
|
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
|
||||||
class ElementwiseDivTensorFloatModule(torch.nn.Module):
|
class ElementwiseDivTensorFloatModule(torch.nn.Module):
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
|
Loading…
Reference in New Issue