Commit Graph

934 Commits (main)

Author SHA1 Message Date
Sean Silva f9c48d0b89 Bring up new RefBackend.
`tools/torchscript_e2e_test.sh` is all green.

This needs a few passes I put into torch-mlir/lib/RefBackend (not to be
confused with `npcomp/lib/RefBackend`, which will soon be deleted).

For the sake of review, since this brings together a lot of things, I
split this into its own commit. I temporarily commented out some "list"
stuff that we are going to remove as part of the torch-mlir refocus.
2021-09-22 14:20:22 -07:00
Sean Silva 6d8e7f1bb1 Implement Python relayout from #311
Fixes https://github.com/llvm/mlir-npcomp/issues/311

The key change is that TorchPlugin is folded into
`torch_mlir.dialects.torch.importer.jit_ir` (it imports the PyTorch
JIT's IR, so that's a good, scoped name for it).
The CMake option `-DTORCH_MLIR_ENABLE_JIT_IR_IMPORTER=OFF` disables it,
which allows building without a PyTorch native dependency.
2021-09-21 09:29:40 -07:00
Sean Silva 5f3b1ce0b8 Fold torch_mlir_dialects python package into `torch_mlir`.
After this change, there are now just two subdirectories in the
`python_packages` directory in our combined build:
- `npcomp_core` with all the npcomp stuff
- `torch_mlir` with all the `torch-mlir` stuff.

The combined `torch_mlir` build will be packaged for use by `pip`.
There isn't anything super useful for wider use in `npcomp_core` so for
now we aren't going to package that one.
2021-09-17 09:27:49 -07:00
Sean Silva 0eb767ea45 Remove frontends/pytorch directory.
It just contained the e2e testing framework. We now fold it into the
main project to reduce complexity.

- `frontends/pytorch/python/` -> `python/torch_support`
- `frontends/pytorch/e2e_testing -> e2e_testing`
- `frontends/pytorch/examples -> examples`
- `frontends/pytorch/test` -> `python/test`
- `torch_mlir_torchscript` python module -> `npcomp_torchscript`
- `torch_mlir_torchscript_e2e_test_configs` python module ->
  `npcomp_torchscript_e2e_test_configs`

This also changes the license of a handful of files from the
"pytorch-style" license to the regular LLVM/npcomp license. The only
people who committed to those files were myself and Yi.
2021-09-17 09:27:49 -07:00
Sean Silva d94d6800fa Bring CI back to life.
This brings back `check-npcomp-all` and the refbackend e2e tests
coverage.
2021-09-16 12:07:32 -07:00
Sean Silva b6be96d722 [torch-mlir earthmoving (2/N)] Python code movement.
This moves the bulk of the Python code (including the Torch interop)
from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also
required reconciling a bunch of other Python-related stuff, like the
`torch` dialects.

As I did this, it was simpler to just remove all the old numpy/basicpy
stuff because we were going to delete it anyway and it was faster than
debugging an intermediate state that would only last O(days) anyway.

torch-mlir has two top-level python packages (built into the
`python_packages` directory):

- `torch_mlir_dialects`: `torch` dialect Python bindings (does not
  depend on PyTorch). This also involves building the aggregate CAPI for
  `torch-mlir`.
- `torch_mlir`: bindings to the part of the code that links against
  PyTorch (or C++ code that transitively does).

Additionally, there remain two more Python packages in npcomp (but
outside `torch-mlir`):

- `npcomp_torch`: Contains the e2e test framework and testing configs
  that plug into RefBackend and IREE.
- `npcomp_core`: Contains the low-level interfaces to RefBackend and
  IREE that `npcomp_torch` uses, along with its own
  `MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR
  python bindings. (all other functionality has been stripped out)

After all the basicpy/numpy deletions, the `npcomp` C++ code is now very
tiny. It basically just contains RefBackend and the `TorchConversion`
dialect/passes (e.g. `TorchToLinalg.cpp`).

Correspondingly, there are now 4 main testing targets paralleling the
Python layering (which is reflective of the deeper underlying dependency
structure)

- `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code.
- `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g.
  TorchScript import)
- `check-frontends-pytorch`: Checks the little code we have in
  `frontends/pytorch` -- mainly things related to the e2e framework
  itself.
- `check-npcomp`: Checks the pure MLIR C++ code inside npcomp.

There is a target `check-npcomp-all` that runs all of them.
The `torch-mlir/build_standalone.sh` script does a standalone build of
`torch-mlir`.

The e2e tests (`tools/torchscript_e2e_test.sh`) are working too.

The update_torch_ods script now lives in
`torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone
build.

This change also required a fix upstream related to cross-shlib Python
dependencies, so we also update llvm-project to
8dca953dd39c0cd8c80decbeb38753f58a4de580 to get
https://reviews.llvm.org/D109776 (no other fixes were needed for the
integrate, thankfully).

This completes most of the large source code changes. Next will be
bringing the CI/packaging/examples back to life.
2021-09-15 13:40:30 -07:00
Sean Silva 28a7738189 [torch-mlir earthmoving (1/N)] C/C++ code movement.
This creates the `external/torch-mlir` directory as an
LLVM_EXTERNAL_PROJECTS-compatible project (analogous to
`iree-dialects`) and completes movement/rename of all pure MLIR C/C++
compiler code into there. The next step will be to move all the Python
code / code that links/includes PyTorch C++ code (which currently lives
in `frontends/pytorch`) into a subdirectory here.

I call this "earthmoving" because it is mostly mechanical changes and
renames. As a quick summary (we can change this down the road easily)
- C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch`
- CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet`
- preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_`
- CMake `NPCOMPFoo -> TorchMLIRFoo`

The goal of this is to create a standalone project creating a center of
mass for entry into the MLIR ecosystem from PyTorch, suitable in scope
for eventual inclusion/ownership in PyTorch. The idea is that
`external/torch-mlir` will some day be pulled out into its own
repository, and then npcomp will simply pull it in as a submodule.

Layering-wise, what lives in `torch-mlir` lowers code from PyTorch
(currently TorchScript, but TorchFX or pytorch/xla-style tracing are
possible extensions) down to what we have been calling the "Torch
backend contract" which is cleaned up IR (inlining, simplifcation,
conversion to value tensors, ...) entirely in the `torch` dialect. This
is the branching off point for further lowering, of which npcomp takes
one opinion (outside `torch-mlir` of course!), namely the
`TorchConversion` dialect/transforms which lower to IR suitable for IREE
and other linalg-on-tensors based lower-level compilers.

Summary of changes:
- move `{include,lib,test}/Dialect/Torch` into `torch-mlir`
- move relevant parts of CAPI into `torch-mlir`.
- leave a few things related to the `torch-mlir` Python build commented
  out, which should be resolved in a subsequent change.
2021-09-10 21:44:37 -07:00
Sean Silva a7252f9a06 Add basic support for lists.
This plumbs through a vertical slice of support for lists.

The main chunk of new code here is AnnotateABIPass which captures the
program signature at the Torch backend contract layer, right before we
start `TorchConversion`. The `TorchConversion` lowering process is lossy
w.r.t. types, so it's necessary to do this for all targets in general.
Like using `!iree.list` directly, we use IREE's ABI annotation
representation for this, although there is nothing very IREE-specific
about it (see
https://github.com/google/iree/blob/main/docs/developers/design_docs/function_abi.md)

We change `ListLiteralModule_basic` to use `!torch.int` because IREE
doesn't support f64 yet (and we don't yet have a way for users to say
that they want `!torch.float` to lower as f32).

Recommended review order:
- AnnotateABIPass and tests
- Arg marshaling in npcomp_backend.py and `iree.py`
- Updates to `list_programs.py` / `xfail_sets.py`
- Moving DeleteDeadIREEListsPass to Backend/Common, so that backends
  that don't support lists can use it. RefBackend uses that pass, for
  example.
2021-09-09 20:48:55 -07:00
dan d7320f3bda fixed some python imports
Change required to enable
./tools/torchscript_e2e_test.sh --config=iree
2021-08-27 14:58:45 -04:00
Stella Laurenzo 4148f88576 Merge npcomp and mlir python namespaces.
* Now the parts of the MLIR API are directly exported under the npcomp module (i.e. `npcomp.ir`, etc).
* Has required fixes for https://reviews.llvm.org/D108489
* Deletes npcomp.tracing vs fixing it because it was a very early experiment that will not be carried forward.
* This makes the npcomp python distribution completely standalone and separate from an mlir installation.
* Makes most of npcomp itself relocatable for future use as a library.
* Most things are a namespace package now. In the future we can s/torch_mlir/npcomp.frontends.torch/ and have it layer properly.
2021-08-22 21:00:42 -07:00
Sean Silva 902c2e579b Add resnet inference jupyter notebook.
This takes the example from torchscript_resnet18_e2e.py and puts it into
a slightly cleaned up notebook form.

It's still a little rough around the edges. Areas for improvement:
- Installation / setup.
- API usability.

Also,
- Add `npcomp-backend-to-iree-frontend-pipeline` since we will be adding
  more stuff there.
- Slight cleanups.
2021-08-09 14:34:43 -07:00
Sean Silva f168cacd6d Remove TCF and TCP.
These were legacy concepts that are now superceded by direct Torch to
linalg-on-tensors lowering. These were based on some very early thinking
related to the layering of frontends vs codegen, which is now obsolete
because:
- We expected a lot more centralization at the frontend (TCF) level. It
  turns out that frontend needs really vary a lot, and there is no grand
  unifying TCF dialect plausible. The additional layer isn't worth it.
- Linalg-on-tensors obsoletes the primary need for TCP. There are still
  a few things not representable with linalg-on-tensors, but the support
  is growing and the whole "not included in linalg-on-tensors" direction
  needs to be rethought. Our TCP dialect didn't cover any of the
  actually important things in this space (such as sort, FFT, top-k,
  etc.).

See historical [slides](https://drive.google.com/file/d/1iljcpTQ5NPaMfGpoPDFml1XkYxjK_6A4/view) / [recording](https://drive.google.com/file/d/1jSPa8TwPKUt0WuLquGc8OgSUVYJHMvWZ/view)
for more details on the origin story here.

Their presence was confusing users too
[bug](https://github.com/llvm/mlir-npcomp/issues/248).

Also,
- Trim down npcomp-run-mlir testing. It was testing TCF to TCP
  lowering for the most part. The essential stuff is retained and
  rephrased with linalg-on-tensors. (we should probably rename it
  "refback-run" or something, as it is just a way to invoke RefBackend)
- test/Python/Backend/RefJIT/simple_invoke_numpy.py is XFAIL'ed. Our
  "anti-framework" direction seems to be the likely future path.
2021-08-02 12:08:39 -07:00
Stella Laurenzo 445472c51e Build packages for npcomp-torch.
* Adds a minimal setup.py for frontends/pytorch
* Makes npcomp-core export its headers and libraries
* Adds a script to build packages.
* Adds CI step to package and smoke test.
* Will need some more tweaks and coordination prior to deploying (version locking etc).
2021-07-29 19:58:59 -07:00
Stella Laurenzo cd44a35177
Bump llvm-project to 5b2e7f50a6798fd9b9c79d9d62fdebcd9e78525b. (#260) 2021-07-29 12:26:54 -07:00
Stella Laurenzo ec611c1e6f
Misc fixes for MacOS. (#255)
* Change aligned_alloc -> malloc. It can fail (and does on MacOS) and is a bit over-aggressive optimization for a reference backend.
* Fixed a fragile test that prints -0.0 on MacOS.
* Fail the test (not the framework) on failure to trace (Torch on MacOS is missing features).
* Fix .so -> .dylib for compiler runtime.
2021-07-27 17:48:47 -07:00
Stella Laurenzo 2dbab50444
Rework the python build to a static assembly of MLIR+NPCOMP (#251)
* Adapt to python build system updates.

* Bump llvm to 310c9496d80961188e8d8f8ad306cdf44bd7541f (includes python build updates)
* Adds refback C-API.
* Re-layers all python builds.
* Rework CI.
2021-07-27 16:10:10 -07:00
Sean Silva d5108b9dc1 Add IREE support in TorchScript e2e tests.
- Add support for "expected failures" in test reporting. The new error
  reports look like
  [this](https://gist.github.com/silvasean/6ffd95e1d55302b699673da201da210d).
  - We will now be able to put these tests into CI, since the harness
    understand which tests are expected to pass and fail.
- Refactor RefBackendTestConfig to NpcompBackendTestConfig which
  supports both RefBackend and IREE.
- Add instructions for installing IREE dependencies (both from packages
  and for local builds of IREE)
- Add `tools/torchscript_e2e_test.sh` for invoking the e2e test
  harness (this makes invoking a bit easier, as it doesn't rely on a
  loose Python invocation).
2021-06-30 16:19:25 -07:00
Sean Silva 6b2424512b Make C API files more consistent
- Make consistent with MLIR Core
  - Use `//` or `///` comments.
  - Use `bool` type for booleans
  - No duplicated comments in .cpp files
- Split types into separate files `{Basicpy,Numpy,Torch}Types.h`
- Add dialect prefix consistently to C API symbols. We have lots of
  similarly named types (e.g. "list" type in basicpy and torch).
2021-06-14 15:34:43 -07:00
Sean Silva 2efda323ff Significantly restructure torch/aten import design.
This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.

This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).

Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
  imported as `torch.somens.someunqualname.someoverloadname` (skip the
  last dotted part if the overload name is empty), OR, if we don't have
  such an op registered, it is imported as
  `torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
  - The addition of the "overload name" is a critical element here, as
    the `(ns,unqual,overload)` triple is unique, which solves a lot of
    problems we were having.
  - This involves having separate MLIR ops for the `trailing_` and
    `.out` variants and all the different overloads. This seemed
    necessary, because the set of overloads is so wild and varied and
    unstructured. The previous design was leaning into some underlying
    structure that just isn't there -- the default situation is
    the "random overload that we want to manage on the MLIR side",
    rather than that being an exception. E.g.  `aten::ne` (not-equal)
    has 21 overloads, only 4 of which are c10 dispatcher ops see
    [gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
    and the "out" variant is really called `.Tensor_out` instead of
    `.out` as it frequently is for other ops.
  - Rationale for all being in `torch` namespace: the set of operators
    are so varied and unstructured that "dialect per namespace"
    doesn't result in anything resembling the typical MLIR dialect
    boundary expectations. We could maybe draw the boundary at
    dispatcher ops vs non-dispatcher ops, but that doesn't seem to
    really result in very much useful structure at this point in time.
  - Note: within the torch operator registry, we effectively have a
    mini-basicpy subdialect (already type-resolved), which is reasonably
    structured.
  - The existing Torch op interfaces are also removed -- now that we
    track the overload name, we can losslessly find the original
    operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
  `ReduceOpVariantsPass` that keys off certain traits (and perhaps
  eventually interfaces) to reduce variants of ops to a smaller set,
  ideally operating on immutable tensors and using surrounding ops to
  model the mutability/aliasing aspects.
  - Note: `torch.ns.unqual.overload` ops allow both immutable and
    mutable tensors (unlike the previous hard distinction in the common
    case). This is a premonition for a future change that will introduce a
    bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
  "ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
  It should look somewhat familiar, but the benefit of hindsight has
  allowed a lot of simplifications.

The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).

Recommended review order:
- Start at some of the new import IR, e.g. in
  `frontends/pytorch/test/node_import/prim.py`,
  `frontends/pytorch/test/acap_export/test_export_add3.py`, and other
  tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
  and associated generated files:
  - `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
  - `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
  traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
  `frontends/pytorch/csrc/builder`. Probably most interesting is the new
  code in `torch_to_mlir_utils.cpp` that has the logic to create the
  `torch.operator` ops or `torch.ns.unqual.overload` ops.

This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
2021-05-19 13:37:39 -07:00
Sean Silva 3a890aa26c Miscellaneous changes while trying to work on ResNet18
- Move frontend lowering pipelines to c++ (this helps with reproducing
  failures in npcomp-opt)
- Add debugging printouts when compilation fails on RefBackendTestConfig

The experience now when a test fails during MLIR lowering is now like this:
```
NPCOMP TorchScript Object Graph IR -> NPCOMP Backend IR lowering failed with the following diagnostics:
failed to legalize operation 'torch.global_slot'
Module does not conform to npcomp's backend contract. See dialect conversion legality information above.

Error can be reproduced with:
$ npcomp-opt -torchscript-to-npcomp-backend-pipeline /tmp/ResNet18Module.mlir
```

And when TorchScript->MLIR import fails it looks like this:
```
PyTorch TorchScript module -> NPCOMP Object Graph IR import failed with the following diagnostics:
unhandled prim operation: %18 : int = prim::min(%17) # /usr/local/google/home/silvasean/.local/lib/python3.9/site-packages/torch/nn/functional.py:4532:4
```

Also,
- Add `--filter=<regex>` to e2e test harness to filter tests.
- Add a few prim ops that were needed to import ResNet18
- Fix torch.prim.Loop.condition assemblyFormat (it previously would not
  round-trip in the case of no loop-carried variables)
2021-04-27 11:51:11 -07:00
Sean Silva fef1733e12 Fix issue with unused functions in torch::jit::CompilationUnit
As described in the code comment:

```
When we import TorchScript IR, we import their entire "compilation unit",
which can contain numerous functions unrelated to the current program,
which breaks torch-globalization-pipeline; for example, there can be
random functions referencing types that haven't been imported
as part of the root `torch.nn.Module` we imported. Those will
be unreferenced private functions which symbol-dce will clean up nicely.
```

This situation is really easy to hit in jupyter notebooks, where the
same cell is evaluated multiple times. That results in the same
class name (at the Python level, e.g. class `Foo` in the top-level
main module). Internally to PyTorch, it handles this situation by
mangling in a unique number to the names of ClassType's and such. When
we import the new ClassType's, we see not just the new
torch::jit::Function's in the CompilationUnit, but, also all the old
ones, which reference ClassType's that are not reachable from the
`torch.nn.Module` that we imported.

Note: there is no way to avoid importing the whole CompilationUnit
(including these old remnants) without doing a fairly complicated call
graph reachability analysis of which functions are reachable from the
methods of the ClassType's we imported. It turns out that once we are
inside MLIR, we model visibility correctly so that `symbol-dce`
"Just Works" for this use case. That is to say, this is not a quick
hack, but rather seems like a totally palatable long-term solution.
2021-04-20 12:00:35 -07:00
Sean Silva c4123d4d4d Add npcomp-verify-backend-contract pass.
This pass verifies that a given module satisfies the contract that we
have for backends. This is phrased as an "allowlist", because we want to
keep this interface tight. Also, this gives much better diagnostics than
a backend randomly crashing or failing to compile would (though they
could still be improved).

This was especially painful because if we had
`tensor<?x!numpy.any_dtype>` slip through, at some point RefBackend
would convert it to a memref type and trip the "verify type invariants"
assertion which gives no location or anything and crashed the process,
which was very unpleasant.

We implement this with the dialect conversion framework, which works
reasonably well and was quick to put together and familiar, but is still
very "op oriented". We probably want to make this hand-rolled
eventually, especially the error reporting (the most useful kind of
error for a dialect conversion user is not necessarily the best for this
use case). Also, in production, these error will go to users, and need
to be surfaced carefully such as "the compiler needs a type annotation
on this function parameter" which in general requires some special
analysis, wordsmithing, and overall awareness of the e2e use case (such
as how much we can lean into certain source locations) to provide a
meaningful user-level diagnostic.

Also, add `inline` to the current frontend lowering pass pipeline to
allow slightly more complicated programs that otherwise would fail on
shape inference.
2021-04-20 12:00:35 -07:00
Sean Silva f5dfa02523 Add `aten.mm` to linalg lowering.
This is our first op with error semantics, and stresses the system.

There are a few design notes of special interest:
- RefineTypes.cpp's note about shape inference in the presence of code
  that dynamically produces and error, and it is provable statically.
- ATenToLinalg.cpp's notes about future automation of the ATen->linalg
  path.
- The notes in Passes.td about using low-tech `std.assert` ops instead
  of `shape.assuming`.

Note: Doesn't work on IREE yet due to the `std.assert` op (needs to be
lowered to `vm.fail` on the IREE side).
2021-04-16 12:03:31 -07:00
Sean Silva 28a0f02746 Add support for compiling through IREE.
Recommended review order:
- Changes in frontends/pytorch/examples/
- Changes in python/npcomp/compiler/pytorch/backend/
- Boilerplate for the `npcomp-iree-backend-lower-linkage` pass.

This change separates out a
`npcomp.compiler.pytorch.backend.frontend_lowering` module that does the
common lowering for all backends. The individual compiler backends
`npcomp.compiler.pytorch.backend.{refjit,iree}` now accept a loosely
defined "TCP + scalar code" IR mix that will be formalized in the
future as the interface to codegen backends.

This also required adding a small pass
`npcomp-iree-backend-lower-linkage` which adds `iree.module.export` onto
functions, and layering that into the frontend flow. The pass doesn't
require a C++-level dependency on IREE, which is nice for now. TBD how
we are going to handle lists (we hope we can get away with sneakerneting
some td files and relying on loose IR compatibility).

Running through IREE requires the ability to import `iree.compiler` and
`iree.runtime`, which can be obtained as follows:
```
python3 -m pip install iree-compiler-snapshot iree-runtime-snapshot -f https://github.com/google/iree/releases/tag/snapshot-20210406.200
PYTHONPATH="${PYTHONPATH}:${MY_IREE_BUILD}/bindings/python/"
```

This patch makes it painfully clear that we don't have any e2e testing
harness to really plug into, and also don't have a usable Python API to
our compiler stack (something usable in a jupyter notebook).
That will be addressed in subsequent commits. We've been flying by the
seat of our pants with this `examples` directory that isn't subject to
any kind of testing or real usability concerns.
2021-04-09 13:15:07 -07:00
Sean Silva 2ab62aec12 MILESTONE: TorchScript unary tanh runs on RefBackend
This revamps the TORCH_TO_TCF_PASSES to reflect the new layering that we
are doing in the compiler. See comments there for the layering.

Also adds `frontends/pytorch/examples/torchscript_tanh_e2e.py` as an
"example". E2E testing story TBD (want to get IREE working first).
2021-04-07 11:06:34 -07:00
Sean Silva 30356c41c8 Add torch-adjust-calling-conventions pass.
This pass incorporates torch.type_bound info and also removes NoneType
returns (eventually it will rewrite tuple types too, but can't yet
because !basicpy.TupleType doesn't track element types).

Recommend looking at adjust-calling-conventions.mlir first to see what
it is doing, and holding your nose for the implementation of the pass.
I decided to implement this with the conversion framework, because it
gives us *some* goodies for type conversion -- mainly avoiding large
amounts of tricky RAUW dances. Unfortunately, the conversion framework
isn't a perfect fit for a couple reasons:
- the incorporation of torch.type_bound is a context-sensitive rewrite
  (requires looking at the arg attr, not just the type).
- NoneType conversion is 1->0, which requires some special handling
- (not implemented yet) 1->N tuple type conversions require special
  handling.
It's a little bit scary, but on balance doing it the other way would
have its own downsides.
2021-04-05 17:56:35 -07:00
Sean Silva 464feacba9 Bump llvm-project to 223dcdcfbe23affdf17ada7f023ee1872fd76160
- ModuleOp no longer has a terminator.
2021-04-05 17:56:35 -07:00
Sean Silva 7a4043b7c4 Add ability to compile from object graph ir. 2021-03-31 09:25:13 -07:00
Sean Silva 703428eff4 Add support for "trailing_" and "out" variants of various ops.
We already had the `promoteTrailingOutTensor` flag, but weren't using
it. A inplaceVariantKernelName flag needed to be added.

This change is a little dissatisfying, as the conversions done by the
RecognizeKernelsPass are currently non-orthogonal. In particular,
`kDropResultAndAliasArg0` probably won't work as intended if mixed with
these (we probably need to promote kDropResultAndAliasArg0 to not be an
arg-level thing anyway, as we have done with promoteTrailingOutTensor).

This involved adding a new op `numpy.overwrite_array`.

```
numpy.overwrite_array %arg2 overwrites %arg0 : tensor<2x3xf32>, !numpy.ndarray<[2,3]:f32>
```

This models the destructive update behavior. Note that in the above op,
we cannot simply RAUW %arg0 with a suitably conveted %arg2 (for example,
%arg0 might have uses that are not dominated by %arg2, or might have an
alias relation with some other array in the program). In general, we
need a pass analogous to "SSA-formation" which knows how to see through
these to uncover an underlying tensor program.

Also, add tanh_out_e2e.py/div_inplace_e2e.py and fix some bitrot in
refjit.py which is my running example I'm trying to get working.
2021-03-19 10:34:50 -07:00
Bairen Yi 53b01cb9ba Bump llvm-project to e31c77b1827fa4dd3511f21af11cfab18ecf6d38
Signed-off-by: Bairen Yi <yibairen.byron@bytedance.com>
2021-03-10 11:01:16 -08:00
Yi Zhang 7bb3b2eb6e Fix the import path in python samples 2021-03-02 13:40:08 -08:00
Sean Silva 3f4161635c Bump llvm-project to be7352c00d51f4358db3a23ed6a077f7cb48eafd
- TensorFromElementsOp -> tensor::FromElementsOp
- `cmpi "eq", ...` -> `cmpi eq, ...`. Same for `cmpf`
- syntax change for private func ops
- some changes to the python bindings
2021-01-21 11:16:55 -08:00
Stella Laurenzo 3f706473fd NFC: Delete npcomp python API and switch to upstream.
* Most updates are mechanical except:
  * python/npcomp/__init__.py and python/NpcompModule.cpp: New init/registration bits to replace some automatic things being done in the old bindings. Also an annoying linkage hack that I'll need to triage next.
  * NpcompModule.cpp: New python helpers for custom types and other hard to reach items (for the new bindings).
  * PybindUtils.h: Extended type casting so that the local extension can directly exchange Mlir* C types.
  * python/npcomp/dialects/*: Build support and ODS bindings for local dialects.
  * mlir_utils.py: Defines an ImportContext to replace the old/bad "Helper" class that tracked locations, and insertion points. This has a number of methods on it that would be good candidates to think about better ways to do them upstream.
* Also hoisted a few stand-alone samples to dedicated unit tests as they covered important things.
* More cleanup can be done, but keeping this patch as mechanical as possible to stay in NFC land (this is big enough).
2021-01-08 10:46:24 -08:00
powderluv 4237172bbf
Fix OSX builds. (#143)
--version_script doesn't work on OSX.
Shared libs are .dylibs on OSX.

TEST=Build on iMac Pro. M1 has other issues will be fixed later

Change-Id: I2bda46349a878b8265e273c05d8db6b46c0df633
2020-12-28 01:30:45 -08:00
Phoenix Meadowlark 699bf5df45
Add cos_e2e.py, test_utils and support for tensor inputs (#134) 2020-11-24 19:02:50 -08:00
Stella Laurenzo 3937dd14cb Add basicpy.numeric_constant op.
* Going through TODOs on the PyTorch side, this is a big cause of them (not being able to have constants for signed/unsigned).
* Added complex while in here since we're at the phase where it is better to just have things complete than partially done.
2020-11-24 16:44:40 -08:00
Stella Laurenzo bea0af419d NFC: Prefactor some basicpy ops in advance of more type work.
* Organizes the BasicPyOps.td file by function.
* Renamed `to_boolean` -> `as_predicate_value` (trying to consistently use "predicate" to refer to i1/low-level types and Bool/Boolean to refer to Python bool types).
2020-11-24 15:49:37 -08:00
Stella Laurenzo f03225b1f1 Bump llvm-project to f4f8a67aaf13bc66a2b7d55561b14a3724a5e0de.
* Incorporates source fixes.
* Uses upstream pybind11 detection logic.
* Patches CI.
* This may break the CI, which will need to be fixed manually in a followup.
2020-11-22 13:14:44 -08:00
Sean Silva ec1336a8a3 Make pytorch/backend/refjit.py a bit tidier
- Print out initial PyTorch IR.
- Rename ambiguous "frontend IR" to "TCF IR".
- Add newlines to prints
- Rename FRONTEND_PASSES to TORCH_TO_TCF_PASSES
2020-11-20 17:21:24 -08:00
Sean Silva 32b2dc6ce7 Revert "Bump llvm-project to 369c51a74b5327464e27e0749ca7ac59ac1349ce"
This reverts commit c60d7b4aae.

It seems to have tickled some sort of pybind version issue:
https://github.com/llvm/mlir-npcomp/runs/1433414550?check_suite_focus=true
2020-11-20 15:09:18 -08:00
Sean Silva c60d7b4aae Bump llvm-project to 369c51a74b5327464e27e0749ca7ac59ac1349ce 2020-11-20 13:03:24 -08:00
harsh-nod 67d6694fdc
Update PYTHON cmake variables to Python3 (#121)
After the recent change of cmake variables
from PYTHON_INCLUDE_DIRS to Python3_INCLUDE_DIRS
and PYTHON_LIBRARIES to Python3_LIBRARIES, there were
a few files that still had references to the old
variables. This patch fixes that.
2020-11-17 16:04:14 -08:00
Stella Laurenzo a7ff87a922 Sever C++ level depend on IREE and rebase on exe and python interface.
* IREE doesn't have proper install support, so there is some temporary hoaky hacking in our CMakeLists.txt to shuttle some symlinks around.
* Reworked the original numpy e2e with IREE test to pipe through iree-translate.
* Removed all of the C++-level dependencies.
* Will generalize and apply to the PyTorch backend in a followup.
2020-11-16 21:32:56 -08:00
Stella Laurenzo b4c7ae1e0c Repurpose numpy-compiler compiler/runtime flow for PyTorch.
* A bit gross because I took the chance to upgrade all of the backend bits to the new MLIR Python bindings and we still co-mingle the old and new for now.
* Since the Python created PassManagers are configured for explicit nesting, I had to upgrade some of the pass pipelines to be explicit.
* The demo in mul_maximum_e2e.py now compiles, runs through PyTorch and through the JIT, prints and asserts the same results.
* I am not claiming that this is the prettiest API in this patch: consider that this is just directly using low-level APIs and there should be an intervening high level API.
2020-11-11 10:38:13 -08:00
Stella Laurenzo d1488c8572 Move existing npcomp.compiler -> npcomp.compiler.numpy.
* Makes room for the pytorch compiler.
* Some common things can be hoisted from the numpy side but some more consolidation needs to happen first.
2020-11-10 19:26:40 -08:00
Stella Laurenzo 30cfc6499f Create public API for torch_mlir python code.
* Adds a trampoline/loader 'torch_mlir' module.
* Plumbs through the MLIR python Context and Module creation, interoping with the MLIR Python API (resolves TODO on creating with own context and accessing the module being built).
* Inter-module Python API interop is still a bit rough but workable via the capsule mechanism. Can be evolved later.
* Exports the frontends/pytorch python sources to the project python/ build directory.
* Requires D89294 to land.
2020-10-13 16:36:49 -07:00
Stella Laurenzo af4edb63ae Start reworking towards a shared library build.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.

Sizes with dynamic linking (stripped, release, asserts enabled):
  libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
  libMLIR.so: 31M
  _npcomp.so: 1.6M (python extension)
  _torch_mlir.so: 670K (python extension)
  npcomp-capi-ir-test: 6.3K
  npcomp-opt: 351K
  npcomp-run-mlir: 461K
  mnist-playground: 530K

Still more can be done to normalize and optimize but this gets us structurally to the starting point.
2020-10-09 16:02:58 -07:00
Stella Laurenzo 0d91885965
Add initial python bindings for c10 dispatcher internals. (#55)
* Exposes the op registry via a get_registered_ops method.
* Moves the aten dialect generation scripts in prep for integrating them with this facility.
2020-09-24 16:26:29 -07:00
Stella Laurenzo bc7c852379 Add more ops from the original integration.
* Still need to add a systematic mechanism for discovering gradient ops.
* Work needed on the various _ suffixed inplace ops.
* Other randoms still not mapped.
* Outside of this commit, I do have enough commented/reworked to roughly build but that will take another handful of commits to get going.
2020-09-18 19:11:18 -07:00
Stella Laurenzo a74a98094b
Add a new python script to auto-generate ATen op ODS definitions. (#43)
* Add a new python script to auto-generate ATen op ODS definitions.

* There is still some work on some of the ops to annotate correct types.
* The ODS is not actually included into the dialect yet, but I'd like to commit it so that we can track changes.
* Will reconcile this with the ops produced by the existing script in a followup. Still need to do some more iteration to reach parity.
2020-09-16 16:21:24 -07:00
Stella Laurenzo 97d83f786a Bump submodule versions.
* llvm-project: b5924a8e27536d19dd5c4d302db29fb6163d5faa
* mhlo: 848ca244d20f045b7921da55a98a04d95ef94f0e
* Multiple breakages that need to be fixed.

Fixes:
* Refactor dialect registration
* Remove all kindof methods (Casting functionality has been added upstream and is implicitly
available, see https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types/1547.)
* Update dialect registration to comply with https://reviews.llvm.org/D85495.
* Remove type kinds and update some changed dialect signatures.
* Upgrade ATen dialect to match upstream needs.
  * Move dialect registration to tablegen.
  * Register the ListType in tablegen.
  * Change dialect initialization signature.
* Use TypeSwitch in MlirIr location printer.
* Remove global registry depends from npcomp-opt.
* Change LowerToLLVM to pass an MLIRContext vs an LLVMDialect for type creation.
* Remove dep on MLIREDSCInterface that is removed upstream.
* Thread through the DialectRegistry for opt and python-like tools.
* Modernize pass registration (This was forced because the GEN_PASS_REGISTRATION code now generates inline functions vs literal pass registration statements)

Co-authored-by: Marius Brehler <marius.brehler@iml.fraunhofer.de>
2020-09-08 13:26:42 -07:00
Stella Laurenzo d1ed6d260e Initial work on a torch op registry.
* This extracts metadata from python invocations (nearly) sufficient to generate ODS and a Torch IR translation table for most of the ops.
* It also has the side effect of creating a data structure with meaningfully runnable examples suitable for an automated regression test.
* There are some ops that are sufficiently complex/weird (like _convolution) that we'll just manually handle those.
* See example output: https://gist.github.com/stellaraccident/60a58457b15e9184e224fa98a2658769
2020-08-28 15:20:55 -07:00
stephenneuendorffer 31b3041e88
Add pytorch interface to ATen Dialect (#30)
This patch adds a pytorch interface to npcomp.  This interface is modeled
after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar
to a gpu device or the xla backend).  Usage is intended to be something like:

  dev = torch_mlir.mlir_device()
  t0 = torch.randn((4,4), device=dev)
  t1 = torch.randn((4,4), device=dev)
  t2 = t0 + t1
  t2_mlir = torch_mlir.get_mlir( t2 )
  t2_cpu = t2.to('cpu')

In this case t2_cpu would contain the result of the computation, and t2_mlir
contains the mlir description of the computation.  Note that this also
properly returns backward paths synthesized by pytorch.  There are several
parts of this:

1) A tensor type (implemented by tensor.* and tensor_impl.*)
2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*)
3) a temporary IR (implemented by ir.cpp)

There is also a reference lowering directly from the ATen dialect to C
function calls consisting of two parts:

1) The driver that uses the IR to generate MLIR, run Passes and compile the
result using mlir::ExecutionEngine (implemented by jit.cpp and
mlir_gen.cpp)
2) A runtime library implemented by lib/aten_ops.cpp.  Most of the operations
are implemented by callbacks into the torch C++ libraries.

Some aspects of this are known to be less than optimal, in particular:
1) There's some function definitions that don't live in the file corresponding
to their declaration.
2) More aspects of this (e.g. the IR) seem like they should be automatically
generated.
3) It's unclear to me how much of the 'IR' is actually necessary, or whether
MLIR could be created on the fly.

Note that this code is licensed in a way similar to pytorch, with the
intention that eventually (when npcomp reaches some maturity) it should be
pushed there.  (see frontends/pytorch/LICENSE)  The code is also structured
much closer to the pytorch coding style than the LLVM coding style.
2020-08-21 11:22:47 -07:00
stephenneuendorffer a5f3b16f92
Fix precommit workflow (#13) 2020-08-06 23:51:05 -07:00
stephenneuendorffer 44af7a6d30
[cmake] Updates for basic shared library support (#7)
Mostly this is CMake cleanup.  Several library dependencies are missing, which
is often revealed with shared library builds.  Also, it's generally bad to
link directly against LLVM libraries because it fails when using
LLVM_LINK_LLVM_DYLIB.  MLIR will pull in libLLVM.so, and there will be
duplicate linkage with the the explicit libraries.  There may need to be more
refactoring here.
2020-08-05 14:49:18 -07:00
Stella Laurenzo 186dfd39ea Remove use of namedtupled defaults kwarg.
* It is incompatible with python < 3.7.

Fixes #6
2020-08-04 18:41:22 -07:00
Stella Laurenzo 3efbbe8735 Misc fixes to enable building/testing on manylinux2014 images.
* Since the manylinux images do not hard-link against python libs (resolving them at runtime), the module must be built without resolving undefined references.
* For some reason, builds on this platform are stricter, exposing dependency ordering issues.
* The CMake bits to build the extension are still somewhat of a mess. I have better versions both upstream and in IREE and will be reconciling. For now, don't look too closely.
2020-08-04 17:26:15 -07:00
Stella Laurenzo 38abe99805 Collapse python_native/ into python/.
* These were separated originally for layering reasons that no longer apply.
* Most of the python extension code is under lib/ with just the module setup in python/.
2020-08-03 17:46:34 -07:00
Stella Laurenzo 29da57e631 Update sample for refjit invocation. 2020-07-10 22:57:26 -07:00
Stella Laurenzo 0356f65dcd Wire through codegen and runtime dependencies.
* Enables e2e test.
* With what I've learned in upstream about test directory layout, I can consolidate most of the separate directories we have for these things. Will do that in a followup.
* Not pleased with the LLVM global initialization depends but serviceable for now.
2020-07-10 22:57:26 -07:00
Stella Laurenzo 9e4a62fc71 Allow JITModule passes to be built separately.
* Re-introduces frontent/backend split.
* Adds a (very) trivial shape refinement pass.
2020-07-10 22:57:26 -07:00
Stella Laurenzo aea05d68d7 Initial python plumbing to interface with the refjit backend. 2020-07-10 22:57:26 -07:00
Stella Laurenzo 2e40ce05ad Remove old sample 2020-07-08 23:06:39 -07:00
Stella Laurenzo 70595bd87e Add sample for exercising the compiler. 2020-07-08 22:58:20 -07:00
Stella Laurenzo aeb422b030 Some fixes to get npcomp building and passing on windows.
There is more that can be done here, but this gets it minimally working.
2020-07-01 21:28:04 -07:00
Stella Laurenzo 2d4b0843c1 Fix evaluation message reporting and add checks to tests. 2020-06-29 17:48:17 -07:00
Stella Laurenzo 046751254f Refactor old tracing tests and remove deprecated ops.
* Old doctests to run under lit.
* Old custom filecheck tests -> pytest directory (under lit).
* Rename some old ufunc ops in the tracer.
2020-06-29 16:19:03 -07:00
Stella Laurenzo 7ca292ade5 Add partial evaluator for explicit numpy ufuncs.
* This enables emission of "numpy.add(a, b)" and several dozen others.
* Will deprecate original ufunc infra in a follow-on.
2020-06-29 15:27:39 -07:00
Stella Laurenzo 1024c508f8 Move numpy compiler support to new directory. 2020-06-29 13:02:34 -07:00
Stella Laurenzo a4f3ce1ed3 Add value coding for ndarray.
* This lets us import arrays from the outer environment, which is the first step to actually handling numpy ops.
2020-06-28 18:42:08 -07:00
Stella Laurenzo bccfd5f6fc Refactor environment.py into components.
* Creates a new top level Configuration class
* Adds a module for creating test configs, getting some hard coding out of core classes
2020-06-28 16:52:25 -07:00
Stella Laurenzo 7bd5733d38 Add "template function" ops and importer code.
* This starts to lay down the infra for reasoning about calls
* Adds the importer code to generate IR for function calls of compiler recognized static functions.
2020-06-26 18:36:36 -07:00
Stella Laurenzo e45287d83e Rename 'macro' nomenclature to 'partial eval'. 2020-06-26 13:50:51 -07:00
Stella Laurenzo dd6a4e638b Add macro facility and use it to enable module and namedtuple attribute resolution. 2020-06-25 23:11:32 -07:00
Stella Laurenzo e5958d820f Add constant resolution from globals and builtins. 2020-06-22 18:42:32 -07:00
Stella Laurenzo f791909a25 Factor name resolution and constant creation to a new environment facility. 2020-06-22 18:15:56 -07:00
Stella Laurenzo b3ecd57b29 Add a sample test that exercises short circuit control flow. 2020-06-19 17:25:18 -07:00
Stella Laurenzo b811db4b76 Wrap the IREE compiler flow in a one stop API. 2020-06-19 17:17:22 -07:00
Stella Laurenzo 529873d13c Wire up IREE compilation and runtime in a new backend test.
* Adds python bindings for invoking flow, HAL, and VM lowering pipelines.
* Adds pythong bindings for translating to VM module flatbuffer.
* Adds a new backend_test/iree directory and configure lit to find the IREE python rt bindings.
* Open code a simple_invoke.py that exercises the whole pipeline (need real APIs for a lot of this).
* Fails when invoking the function because I never implemented argument marshaling for scalars :(
* Plenty of stuff to do tomorrow.
2020-06-19 00:30:34 -07:00
Stella Laurenzo b21b5322f6 Basicpy conversion to IREE+std skeleton and first conversions.
* Conversions to std for numeric binary expressions, numeric to_boolean, and numeric comparisons.
* Added folders to constant ops to comply with requirements of the pass system.
* Extended the frontend with parameter/result annotation processing for primitives (can specify types for function arguments).
* Added (empty) directory/sources for IREEVM conversions. These are only enabled if IREE is enabled.
2020-06-13 23:45:43 -07:00
Stella Laurenzo 2ba8296151 Add script tools/format_source.sh and run it on all python and c++ sources. 2020-06-13 14:53:54 -07:00
Stella Laurenzo c3d4436397 Introduce a Target class and use it to define generic 32 and 64bit variants. 2020-06-13 14:43:10 -07:00
Stella Laurenzo 750541e9a9 Extend type inference so that it works across conditional boundaries.
* The implementation is still limited but gives something to build on.
2020-06-10 21:33:17 -07:00
Stella Laurenzo 917fd94f94 Add limited support for function arguments. 2020-06-10 19:17:29 -07:00
Stella Laurenzo e3fd22a035 Add a (very) basic type inference pass for basicpy.
For simple programs, this gets us enough typing to lower to real backends.
2020-06-10 19:04:05 -07:00
Stella Laurenzo 6728503fcf Remove unused assignment 2020-06-09 18:35:21 -07:00
Stella Laurenzo 340f109742 Add implicit return and expression statements where the value id discarded. 2020-06-09 18:34:07 -07:00
Stella Laurenzo 2bb4cdf4e7 Split frontent.py into importer.py. 2020-06-09 17:16:36 -07:00
Stella Laurenzo 22cbe044c2 Add IfExp emission. 2020-06-09 17:10:52 -07:00
Stella Laurenzo e18e8e0a96 Add boolean/logical operations (and, or, not).
* Adds a new to_boolean op to evaluate a value as a truthy i1
* Uses cascading scf.if ops to properly evaluate and/or sequences (short-circuit and original value returning)
* Adds a helper to construct select ops and uses it to implement 'not'
2020-06-09 00:01:21 -07:00
Stella Laurenzo 44f7e22f4d Remove 2-arg compare special case and use common utility to do sub evaluation. 2020-06-08 17:54:14 -07:00
Stella Laurenzo 1ef3614682 Add support for short-circuit comparisons with scf.if. 2020-06-08 17:52:07 -07:00
Stella Laurenzo a32219c3bb Refactor things so that an SCF mixin dialect helper can be used.
* Makes the OpBuilder an input to the DialectHelper.
* The containment hierarchy can be simplified further.
* There are still only a few places this is instantiated, so opting for working over great.
2020-06-08 16:10:51 -07:00
Stella Laurenzo 85b724e70c Adds ODS and import support for binary_expr and binary_compare ops.
* Currently only supports non-short-circuit comparisons.
2020-06-08 13:46:06 -07:00
Stella Laurenzo 7c176ed872 Add None constants. 2020-06-07 16:21:00 -07:00
Stella Laurenzo 4cd604f2a2 Fix AST constant handling to be compatible with 3.8 (the right way). 2020-06-07 16:16:19 -07:00
Stella Laurenzo 72499e0319 Add bytes constants. 2020-06-07 16:00:29 -07:00
Stella Laurenzo a1e6ff4ab7 Add ellipsis constants. 2020-06-07 15:49:39 -07:00
Stella Laurenzo f3829b1d4f Add string constants. 2020-06-07 15:46:28 -07:00
Stella Laurenzo 869228e316 Add bool constants. 2020-06-07 15:15:19 -07:00
Stella Laurenzo af4466197e Add lit test suite for python compiler.
* Adds a test for simple constants and fixes issues.
2020-06-07 14:29:39 -07:00
Stella Laurenzo 28048337ae Fix issue with float_attr. 2020-06-06 22:01:38 -07:00
Stella Laurenzo 7b95d860e9 Add sample for ast extraction. 2020-06-06 21:29:20 -07:00
Stella Laurenzo 0cc0a7165e Add basic AST -> basicpy dialect function extraction.
* Extends the bindings to support locations.
* Various other things necessary to extract a function with simple numeric expressions.
2020-06-06 21:24:28 -07:00
Stella Laurenzo 60f132b26f Add pass registrations and a simple compilation example from python.
* Got side-tracked hunting down a vague-linkage RTTI issue due to not anchoring key methods in PassOptions.h to a module.
* Took the path of least resistance and just added the option to build LLVM with RTTI. I know how to fix this but would like to do some broader upstream fixes versus just hunting/pecking/working around in this project.
2020-06-03 23:58:58 -07:00
Stella Laurenzo fddf41ca92 Add python binding for running passes. 2020-06-03 01:29:59 -07:00
Stella Laurenzo f2985e0901 Add implicit constant capture.
We want more sophisticated capture later, but this allows basics to function.
2020-05-08 17:55:02 -07:00
Stella Laurenzo 8ae71a9551 Add MLIRContext.dense_elements_attr to create an attribute from a python buffer/array. 2020-05-08 17:36:07 -07:00
Stella Laurenzo a91b0bfbe1 Add numpy.get_slice op and wire it up to the tracer. 2020-05-08 16:04:58 -07:00
Stella Laurenzo db0b0ef1b2 Switch sample tracer to emit builtin_ufunc globals instead of the impl versions. 2020-05-08 14:35:13 -07:00
Stella Laurenzo 0092b912ab Update all python imports to be absolute and use a .env file to set the path correctly.
This makes things just work for debugging in VSCode.
2020-05-06 23:25:04 -07:00
Stella Laurenzo 3611958b11 Move python native library to python_native/_npcomp...so.
This allows binary and source packages to exist at different physical paths.
2020-05-06 22:44:12 -07:00
Stella Laurenzo 680e11ae62 Rename basicpy_None_type to basicpy_NoneType to match native spelling.
* Also adds Basicpy.py to tests.
2020-05-06 19:07:50 -07:00
Stella Laurenzo 644d9fb0d3 Remove spammy warnings and filecheck info in run_tests.
* This suppresses a warning that arises from using "-m" to launch a module contained in a package that arranges modules via __init__.py. It seems irrelevant to the use case of running doctests.
2020-05-06 18:48:12 -07:00
Stella Laurenzo 6b7c913e0b Add DialectHelper for Basicpy dialect.
* Involved native code for the types and slot_object_get ops.
2020-05-06 18:26:03 -07:00
Stella Laurenzo 4ebf972503 Merge ir.Ops and ir.Types into ir.DialectHelper.
This will aid in managing hierarchies of custom dialect helpers.
2020-05-06 18:26:03 -07:00
Sean Silva aa9ffc3a11 Delete npcomp.edsc_test from python/run_tests.py 2020-05-06 18:24:44 -07:00
Stella Laurenzo 714bc01c02 Bump llvm version to 0c4aab27b3da05dd1b0c0c39472525325fda5e23.
* Fixes some api-change breakages.
* Deletes edsc module now that the IR bindings are working (and since it broke with this update).
2020-05-05 21:00:49 -07:00
Stella Laurenzo 502ef8f195 Create skeleton for 'Basicpy' dialect.
* It is time to start adding more python mechanisms.
* Running into this for materializing slice() objects.
2020-05-04 17:48:02 -07:00
Stella Laurenzo ebb5bcf6af Handle np.transpose() and ndarray.T shortcut.
* Just the form without explicit permutation for now.
2020-05-04 16:20:36 -07:00
Stella Laurenzo a5f755d406 Implement __array_func__ hook and use it to trace np.dot.
* Creates an abstraction/registry around emitters (intended to generalize to AST compilation as well).
* Reworks ufuncs to use the same mechanism as array funcs.
* Adds the numpy.dot op.
2020-05-04 15:47:01 -07:00
Stella Laurenzo 1f54838d2e Add hook for __array_function__ and (failing) np.dot sample. 2020-05-03 13:39:30 -07:00
Stella Laurenzo a38a1e2850 Cleanup python namespace a bit for standalone use. 2020-05-02 21:54:13 -07:00
Stella Laurenzo c89a35f97f Rework the poc tracer to be structured how intended. 2020-05-02 19:52:21 -07:00
Stella Laurenzo 0805013716 Rename ufunc_call op builder for consistency. 2020-05-01 19:06:10 -07:00
Stella Laurenzo 78a8e6ec9e Add enough python bindings to build functions and ufunc calls. 2020-05-01 18:44:06 -07:00
Stella Laurenzo ba0c96b51a Add python side Numpy dialect wrapper. 2020-05-01 10:38:52 -07:00
Stella Laurenzo 23a9ffaabe Add wrappers for block and operation iteration.
I don't technically need this now but adding while the train of thought is fresh.
2020-05-01 10:16:19 -07:00
Stella Laurenzo c8740fd866 Start splitting Py* types into a header so that further C++ interop can be built. 2020-04-30 19:23:18 -07:00
Stella Laurenzo ec0f6b4b22 Add MLIRContext and ModuleOp python bindings with asm parse/print and diagnostics. 2020-04-30 17:14:03 -07:00
Stella Laurenzo 67d38db1e2 Start defining new IR bindings and cleanup python init. 2020-04-30 16:00:00 -07:00
Stella Laurenzo d3b6e1767a Add stub numpy dialect. 2020-04-26 17:20:58 -07:00
Stella Laurenzo ac302ea916 Update readme with simple config 2020-04-26 16:32:10 -07:00
Stella Laurenzo 9ee2f6ff7f Initial commit of python boiler-plate. 2020-04-26 15:50:23 -07:00