At some point in the past month, stablehlo gained a number of patches that implement a non-trivial bit of threaded reference code. It fails to compile in Windows in pretty catastrophic ways.
But this isn't the main problem: by way of the MLIR CMake macros being used, if we include stablehlo before our code, we end up building the whole project, whether needed or not.
We just have to do this: I ran into an issue today where I needed to make a one line patch to stablehlo to work around a compiler issue, and it is completely unapparent how to do so given that the mlir-hlo repo is a read-only export and is at the tail end of a multi-week integration chain from the open-source stablehlo repo.
We've discussed this often enough and gotten +1 from everyone that they are ok with taking the e2e testing hit if it becomes necessary: It is necessary as the current situation is unmanageable.
Looking at it, I expect it wouldn't actually be very difficult to build a little runner binary out of the stablehlo interpreter and subprocess call that in order to get the testing coverage back. I leave that as an exercise to the users of this part of the stack and recommend following the breadcrumbs from the deleted python/torch_mlir_e2e_test/stablehlo_backends/linalg_on_tensors.py file and the main.py changes.
Note that I am pointing us at a stablehlo fork for the moment until it is apparent that we don't need to carry any local patches to it. We can update this in a few days if everything is clear.
This patch updates the submodules to:
- llvm: 3f8d8c1aac3086f603ad73f18fe2bd4fb91fa10a
- mhlo: 4384a47b03dc377d651523037867899a340b0e96
The only change made is calling `registerAllExtensions` during dialect
registration. See: https://reviews.llvm.org/D120368
This commit updates the `llvm-project` and `mlir-hlo` submodules to
commits:
- llvm-project: 6875424135312aeb26ab8e0358ba7f9e6e80e741
- mlir-hlo: 92fd33a4bacbeb93ab276a49f38bdebd5f9d7487
The calls to `mlir::MlirOptMain` are updated to no longer specify the
flag `preloadDialectInContext` that has been removed (see:
https://reviews.llvm.org/D149039).
* Adding stablehlo dialects support for torch-mlir-opt tool.
* Update torch-mlir-opt.cpp
Fixed the build error according to build configuration for macOS.
We use it for more than TorchScript testing now. This is a purely
mechanical change to adjust some file paths to remove "torchscript".
The most perceptible change here is that now e2e tests are run with
```
./tools/e2e_test.sh
instead of:
./tools/torchscript_e2e_test.sh
```
On my local machine, `unzip` didn't exist (producing a "command not
found" error), but CMake ignored the error. Although the build did
succeed (because it found a previously-built version of libtorch), it
seems better to abort builds on such failures, so this patch checks the
return code of all external process invocations.
Along similar lines, this patch also updates the shell scripts in
`build_tools` to extensively use double-quoting to prevent unintentional
word splitting or globbing. Since some of the scripts execute `rm`
while using shell variables, this patch also adds the preamble `set -u`
to abort execution if an undefined variable is referenced, so that we
reduce the chances of executing `rm -rf /` if the path expression
happens to refer to an undefined variable.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.
The standard file comment is now:
```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```
See `LICENSE` in the project root for the terms of both licenses.
This leaves no real code outside torch-mlir.
This also renames the "npcomp backend contract" to "linalg on tensors
backend contract" as the name of the abstraction layer that RefBackend
(IREE too) accepts.
It just contained the e2e testing framework. We now fold it into the
main project to reduce complexity.
- `frontends/pytorch/python/` -> `python/torch_support`
- `frontends/pytorch/e2e_testing -> e2e_testing`
- `frontends/pytorch/examples -> examples`
- `frontends/pytorch/test` -> `python/test`
- `torch_mlir_torchscript` python module -> `npcomp_torchscript`
- `torch_mlir_torchscript_e2e_test_configs` python module ->
`npcomp_torchscript_e2e_test_configs`
This also changes the license of a handful of files from the
"pytorch-style" license to the regular LLVM/npcomp license. The only
people who committed to those files were myself and Yi.
This creates the `external/torch-mlir` directory as an
LLVM_EXTERNAL_PROJECTS-compatible project (analogous to
`iree-dialects`) and completes movement/rename of all pure MLIR C/C++
compiler code into there. The next step will be to move all the Python
code / code that links/includes PyTorch C++ code (which currently lives
in `frontends/pytorch`) into a subdirectory here.
I call this "earthmoving" because it is mostly mechanical changes and
renames. As a quick summary (we can change this down the road easily)
- C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch`
- CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet`
- preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_`
- CMake `NPCOMPFoo -> TorchMLIRFoo`
The goal of this is to create a standalone project creating a center of
mass for entry into the MLIR ecosystem from PyTorch, suitable in scope
for eventual inclusion/ownership in PyTorch. The idea is that
`external/torch-mlir` will some day be pulled out into its own
repository, and then npcomp will simply pull it in as a submodule.
Layering-wise, what lives in `torch-mlir` lowers code from PyTorch
(currently TorchScript, but TorchFX or pytorch/xla-style tracing are
possible extensions) down to what we have been calling the "Torch
backend contract" which is cleaned up IR (inlining, simplifcation,
conversion to value tensors, ...) entirely in the `torch` dialect. This
is the branching off point for further lowering, of which npcomp takes
one opinion (outside `torch-mlir` of course!), namely the
`TorchConversion` dialect/transforms which lower to IR suitable for IREE
and other linalg-on-tensors based lower-level compilers.
Summary of changes:
- move `{include,lib,test}/Dialect/Torch` into `torch-mlir`
- move relevant parts of CAPI into `torch-mlir`.
- leave a few things related to the `torch-mlir` Python build commented
out, which should be resolved in a subsequent change.
With the following changes the compilation can continue until
RefineTypes pass:
- Add operators without ODS into `torch_ods_gen.py`
- Add some new optional and list types in `TorchTypes.td`
- Add some folders for aten int type comparator ops
- Modify GlobalizeObjectGraph.cpp. For global slots that's not used,
dont check if an aliased value is stored in more than one of global
slots. This can work around a failure where the same tensor is stored
in multiple "version" slots which are not used.
To use, do `ninja npcomp-lsp-server`, copy `build/bin/npcomp-lsp-server`
into your PATH somewhere, and then add
```
"mlir.server_path": "npcomp-lsp-server",
```
to your settings.json.
Also bump llvm-project to 2d9759c7902c5cbc9a7e3ab623321d5578d51687 to
bring in latest `mlir-lsp-server` changes.
* Added additional *ToLLVM conversion patterns (they were disaggregated from standard).
* Misc renames.
* Spelling change on ConvNCHW op, and it now expects strides and dilations attributes.
- Build adjustments for `.cpp.inc` dialect files.
- Renaming of `memref.dim` to `tensor.dim` for tensor case.
Minor changes:
- Renaming of `mlir::linalg::ReassociationIndices` to
`mlir::ReassociationIndices`.
- Adjust command line option parsing in npcomp-run-mlir.
This includes IREE and RefBackend.
This includes a fixup to torchscript_e2e_test.sh for handling the
situation where PYTHONPATH was not already exported.
- Add support for "expected failures" in test reporting. The new error
reports look like
[this](https://gist.github.com/silvasean/6ffd95e1d55302b699673da201da210d).
- We will now be able to put these tests into CI, since the harness
understand which tests are expected to pass and fail.
- Refactor RefBackendTestConfig to NpcompBackendTestConfig which
supports both RefBackend and IREE.
- Add instructions for installing IREE dependencies (both from packages
and for local builds of IREE)
- Add `tools/torchscript_e2e_test.sh` for invoking the e2e test
harness (this makes invoking a bit easier, as it doesn't rely on a
loose Python invocation).
- renames of OwningRewritePatternList -> RewritePatternSet
- also `insert` to `add`
- RewritePatternSet holds a context now
- memref dialect split from std
* Adds f32 scalar argument support across the ABI boundary.
* Adds support for passing input type / shape information
across the ABI boundary
* Adds support for parsing / creating input FloatAttr's in
`npcomp-run-mlir`
* This has been anticipated for a long time in that it is quite hard to keep C++ binary compatibility across a system landscape as diverse as PyTorch, LLVM, and this project. This is why we based the PyTorch extension on the MLIR and NPCOMP C APIs only: that is the only sane linkage story for the entire matrix.
* Removes the few LLVM'isms in torch_mlir that had snuck in, using either STL or PyTorch support utilities. The new rule here is that LLVM C++ includes are forbidden at this level and (as stated in the design), torch_mlir should use the PyTorch runtime and support libraries (not introduce an incidental C++ dependency on LLVM).
* Also deletes mnist-playground as it was proving impossible to keep the grid of PyTorch vs system ABI divisions functioning. I am open to a less drastic course here (optional/disabled by default?)
* This gets us pretty close to just using PyTorch's extension builder API, which will be nice for distribution (i.e. it integrates well with the PyTorch ecosystem for deployment). I ended up just simplifying the in-tree CMake support for now.
* Fixes#138
After the recent change of cmake variables
from PYTHON_INCLUDE_DIRS to Python3_INCLUDE_DIRS
and PYTHON_LIBRARIES to Python3_LIBRARIES, there were
a few files that still had references to the old
variables. This patch fixes that.
* Incorporates a dep on the new MLIRPublicAPI shared library.
* More work is needed to further separate npcomp between public API and impl libraries, but amalgamating them will hold until then.
Two changes:
- no more "verifyPasses" constructor arg for PassManager
- OpPassManager defaults to requiring explicit "nest" calls when created
via the C++ API. The behavior upstream for mlir-opt still obeys the
"implicit" mode, so I just slapped that onto all our pass managers.
I pinged https://reviews.llvm.org/D90671 to get a signal for whether we
are expected to migrate to explicit mode. If so, I'll do that too later.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.
Sizes with dynamic linking (stripped, release, asserts enabled):
libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
libMLIR.so: 31M
_npcomp.so: 1.6M (python extension)
_torch_mlir.so: 670K (python extension)
npcomp-capi-ir-test: 6.3K
npcomp-opt: 351K
npcomp-run-mlir: 461K
mnist-playground: 530K
Still more can be done to normalize and optimize but this gets us structurally to the starting point.
Other than the dialect definitions (which will live in standard Dialect/
subdirectory), the goal here is to keep RefBackend-related code nested
in {include/npcomp,lib,test}/RefBackend.