If a tensor is initialized by a list with a single constant integer,
this folder turns it into a torch.vtensor.literal
---------
Co-authored-by: Dave Liddell <dliddell@xilinx.com>
Leaning on the QDQ functionality in torch we can support the QLinearConv
operation by piggybacking through `torch.Convolution`. This includes
some changes such as allowing the `onnx` rewriter to run recursively.
Doing so allows `QLinearConv` to decopmose to `onnx.Convolution` which
is then lowered to `torch`.
So that the CumSum Op in OPT can get the constant that it requires to be lowered to TMTensor
---------
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
Linalg has quantized specific operations. We can lower to these
operations when there is a known zeropoint and scale operations. This
allows the `convolution` to occur with lower bitwidth's, improving the
overall performance.
We were seeing some assertion failures after some checks around folders
were tightened up in LLVM:
https://github.com/llvm/llvm-project/pull/75887 . This PR essentially
moves the logic that used to be applied at the LLVM level into the
folder, which seems to be the suggested fix.
I'm not sure if the IR that caused issues for us _should_ be valid?
```
%1 = torch.aten.detach %arg0 : !torch.tensor<[1],f32> -> !torch.tensor
```
A better fix might be to create a verifier ensuring the result of
`aten.detach` has the same type as its operand.
---------
Co-authored-by: aaron-stgeorge <aaron.stgeorge@getcruise.com>
After noticing a number of commits with unrelated formatting changes,
I think something was changed with clang-format at one point and we're
seeing a number of unrelated changes. Doing a refresh can help avoid
this.
The changes made here came from
```
find lib -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
find include -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
find projects -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
```
This preserves sparsity at the most obvious places of lowering TORCH
tensors to MLIR RankedTensorType tensors. Other places are marked for
audit. With some initial lowering tests.
This adds an encoding field to the torch type, using the interfaces for
printing, parsing, and verification. Note that although this change
prepares adding sparsity to the torch type (as illustrated by the round
trip and invalid tests), nothing in this change depends on the actual
contents of the encoding field!
This includes custom op matching for decomposed operations and fusing
dequantization into dense operations. As a validation we compare
to the dequant+mm torch implementation.
The logic here is very similar to the conversion for AdaptiveAvgPool1d
#2661 with a few modifications:
1. buffVal = -inf instead of 0
2. the main linalg generic op accumulates a max, instead of a sum, to
the first output tensor
3. avg pooling requires dividing the sum pool by the kernel width, which
we stored as an auxilliary tensor (kSizeTensor). Here, the auxiliary
tensor will be recording the indices. Strangely enough, the only
signature available for this function is to return indices, and it
appears that they must be computed whether the user desires them or not.
See
[pytorch/torch/nn/functional.py](https://github.com/pytorch/pytorch/blob/main/torch/nn/functional.py#L1174).
Before writing other adaptive pooling conversions, the logic of this
decomposition should be rolled into a helper function that will work for
both max and avg pooling ops. Even the auxiliary tensor should likely be
automated. This code was written in a slightly more tedious way than
strictly necessary (often using loops to fill SmallVectors up to rank-2,
which is only two in this case), in order to more easily facilitate the
transition to a helper function.
convolution with [time,batch,channel] ordering, as opposed to the
default [batch, channel, time]. Currently implementing by transposing
the input and output, but may need to get its own implementation in the
future because this is supposed to be an op that gives a speedup. This
is used by fairseq
(https://github.com/facebookresearch/fairseq/issues/172).
(in case you were wondering like me, this is different from transposed
convolution. Transposed convolution has fractional strides).
---------
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
Co-authored-by: Frederik Harwath <frederik.harwath@amd.com>
Handle both `torch.dequantize` and `torch.quantize_per_tensor` including
the op based quantization parameter tracking. This includes adding
`qint32` to torch types as it was missing during the initial type
inclusion.
For testing we only have `torch.int8` and `torch.float` types on
function boundaries as the `qint8` types require passing the scale
and zero point quantization information which is not supported yet.
Adds a lowering to Linalg for reflection_pad1d. Based on ideas/code from draft PR
https://github.com/llvm/torch-mlir/pull/2693.
---------
Co-authored-by: Kumar Deepak <kumar@xilinx.com>
The expression for HardSigmoid in Onnx
(https://onnx.ai/onnx/operators/onnx__HardSigmoid.html): max(0, min(1,
alpha * x + beta))
is inherently different from HardSigmoid in Torch
(https://pytorch.org/docs/stable/generated/torch.nn.Hardsigmoid.html)
which is: if x < -3 -> 0
elif x > 3 -> 1
else x/6 + 1/2
That being said, it was just better to compute out the entire expression
when translating the Onnx expression to Torch mlir, which is done in
this PR. Some of the logic is shared from the files in
`DecomposeComplexOps`. Therefore, refactored some shared logic between
`DecomposeComplexOps` and `DefaultDomainGToP` and put it in a `Utils`
file.
`AtenStackOp` defines this folder for list operand containing single
element:
```
OpFoldResult AtenStackOp::fold(FoldAdaptor adaptor) {
auto list = getOperand(0).getDefiningOp<PrimListConstructOp>();
if (!list || !list->hasOneUse() || list.getElements().size() != 1)
return nullptr;
return list.getElements()[0];
}
```
However, unlike `AtenCatOp`, `AtenStackOp` cannot be folded away for
single element list operand because the result from a stack operation
contains an additional dimension (of size 1, like expand_shape).
This PR removes the `AtenStackOp::fold` method, and adds an e2e test for
single element list input case, which fails on current `main` as
follows:
```
Unexpected outcome summary: (linalg)
****** Failed tests - 1 tests
FAIL - "TensorsStackSingleElementListModule_basic"
@ trace item #0 - call to "forward"
@ output of call to "forward"
ERROR: shape (torch.Size([10, 32])) is not equal to golden shape (torch.Size([10, 1, 32]))
```
Thanks Chris Lalau Keraly for the bug report.
This commit adds the OnnxToTorch support for BitwiseXor, BitwiseOr, Div, Equal, Cast,
Ceil, Floor, Cos, and Clip op.
This commit also adds the TorchToLinalg support for aten.clamp.Tensor and aten.clamp_min.Tensor op.
Signed-Off By: vivekkhandelwal1424@gmail.com
Adds a lowering for the torch.aten.argmin operator to linalg via decomposition into torch.aten.min.dim.
---------
Co-authored-by: Franz Haniel <franz.haniel@amd.com>
The function `getTypeForScalarType` currently takes an argument to
specify the signedness of integer types. This is leakage of backend
specific requirements into the torch dialect world. Because
`getTypeForScalarType` is a utility function for the torch dialect, it
should only produce types that match the sign conventions used by
PyTorch (regular integers are signed and unsigned integers are
unsigned).
This commit removes the signedness argument from
`getTypeForScalarType`, and moves the backend specific handling of
integer types to the backend code.