Commit Graph

788 Commits (08355be5d04c2751a7bf88e676a87933fa5b29d3)

Author SHA1 Message Date
Andreas Falkenberg 5862854bc8
[ONNX][TORCH-MLIR] LayerNorm (#2716)
Layer Normalization using the torch.aten.native_layer_norm 

https://github.com/nod-ai/SHARK-Turbine/issues/325
2024-01-11 14:27:04 +05:30
kumardeepakamd 29569713f3
support for onnx.expand operator (#2729)
maps onnx.expand to torch aten broadcast_to, three tests added

---------

Co-authored-by: Kumar Deepak <kumar@xilinx.com>
2024-01-10 13:05:37 -08:00
Vivek Khandelwal 208ae35583 [MLIR][ONNX] Add TorchToOnnx Support for DepthToSpace op
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-10 17:50:47 +05:30
Vivek Khandelwal 4707d3bdc6 [MLIR][ONNX] Add OnnxToTorch support for Bernoulli and CastLike op
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-10 16:24:06 +05:30
Vivek Khandelwal 35e8f86792 [MLIR][ONNX] Add OnnxToTorch support for Dropout and Elu op
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-01-10 16:23:55 +05:30
John Wu 4e5e34d215
[MLIR][ONNX] Add OnnxToTorch support for Slice Op (#2696) 2024-01-03 19:41:10 -08:00
Xida Ren (Cedar) 1778314620
add basic cumsum. this doesn't support the exclusive and reverse attrs (#2717)
fixes #2711
2024-01-03 09:52:59 -08:00
Xida Ren (Cedar) 9fc212ea9a
support Onnx opset 1-13 ReduceMean where axes is supplied as an attr (#2703)
(instead of an input)

Addresses part of #2689. fixes #2702
2023-12-28 09:31:41 -08:00
Xida Ren (Cedar) d560698e3d
Lower `onnx.split` to `torch.aten` (#2686) 2023-12-27 17:53:07 -08:00
aldesilv 2d796b7502
lower onnx max op to torch aten maximum op (#2618)
lower onnx min op to torch aten minimum op
2023-12-27 11:07:35 -08:00
aldesilv 336cfb64b5
OnnxToTorch support for onnx.Mul op (#2699) 2023-12-27 10:50:08 -08:00
Xida Ren (Cedar) 6847fc1fc6
Fix since-opset too high (#2701)
Addresses two of the ops from
https://github.com/llvm/torch-mlir/issues/2689

https://github.com/llvm/torch-mlir/issues/2700
2023-12-27 10:08:09 -08:00
aldesilv abc6b0a25a
onnx to torch pow support (#2656) 2023-12-27 09:34:48 -08:00
Vivek Khandelwal 4f252c88b4
[MLIR][ONNX] Add OnnxToTorch support for GlobalAveragePool op. (#2692)
This commit adds the OnnxToTorch support for GlobalAveragePool op.

Signed-Off By: vivekkhandelwal1424@gmail.com
2023-12-26 10:25:31 -08:00
saienduri ee75e8d1ae
[MLIR][ONNX] Add OnnxToTorch support for Reshape Op (#2698)
This commit adds the OnnxToTorch support for Reshape op.
2023-12-26 10:20:13 -08:00
Vivek Khandelwal 0849fd0a06 [MLIR][ONNX] Fix onnx.conv lowering to handle bias tensor
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2023-12-22 16:36:21 +05:30
Vivek Khandelwal 9a72c6584e [MLIR][ONNX] Add OnnxToTorch support for BatchNormalization and Concat op.
This commit adds the OnnxToTorch support for BatchNormalization and Concat op.

Signed-Off By: vivekkhandelwal1424@gmail.com
2023-12-22 11:25:33 +05:30
Stella Laurenzo ccd469ca0d
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681)
Changes made during upstreaming:

* Removed comments attributing some copied code back to torch-mlir
(since it is now repatriated).
* Re-organized imports.
* Inlined RefMapping/RefTracker and TypeSubclassMap from an external
utility module.
* Added FxImporter class comments.
* Updated stack trace extraction to be fail safe.
* Added an entry-point for `import_frozen_exported_program` which uses
the shiny new upstream `torch.export.export()` API (versus the
lower-level/older API that Turbine is presently using). This
necessitated a small FX rewrite to line external state management up
with current conventions.
* Adapted one of Turbine's importer tests to go with this initial
submission. Turbine unfortunately has a lot of more-integration-ey
tests, and I would like to extract those as more of unit tests of the
importer features and upstream them that way vs trying to copy directly.
For now, one overall test with the initial submission gets us moving.

I acknowledge that there are some code quality things that could be
improved in this submission: this was authored over the course of many
months (and often via some trial and error). I would like to keep it
relatively converged with the downstream for the next few steps while
getting the test suite upstreamed. And then it will be easier to take a
hygienic pass through the code.

Including co-authors for contributors in the git log of the original
repository.

Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com>
Co-authored-by: Avinash Sharma <aviator1994@gmail.com>
Co-authored-by: Arham Khan <arhammkhan@gmail.com>
Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu>
Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-21 08:40:10 -08:00
John Wu 46f2cb50dc
[onnx] Lower onnx.HardSigmoid to torch (#2682)
The expression for HardSigmoid in Onnx
(https://onnx.ai/onnx/operators/onnx__HardSigmoid.html): max(0, min(1,
alpha * x + beta))

is inherently different from HardSigmoid in Torch
(https://pytorch.org/docs/stable/generated/torch.nn.Hardsigmoid.html)
which is: if x < -3 -> 0
elif x > 3 -> 1
else x/6 + 1/2

That being said, it was just better to compute out the entire expression
when translating the Onnx expression to Torch mlir, which is done in
this PR. Some of the logic is shared from the files in
`DecomposeComplexOps`. Therefore, refactored some shared logic between
`DecomposeComplexOps` and `DefaultDomainGToP` and put it in a `Utils`
file.
2023-12-21 07:29:22 -08:00
Vivek Khandelwal 3226241521 [MLIR][ONNX] Add OnnxToTorch support for Conv and ConvTranspose op.
This commit adds the OnnxToTorch support for Conv and ConvTranspose op.

Signed-Off By: vivekkhandelwal1424@gmail.com
2023-12-21 11:12:14 +05:30
Rik Huijzer 8328998172
Allow printing all IR in `torch_mlir.compile` (#2669)
This PR adds the `enable_ir_printing` option to `torch_mlir.compile`,
which can be used to print the IR for all intermediate passes.

When running the added test file via:
```shell
$ python test/python/compile.py 2> tiny.stderr
```
the file `tiny.stderr` is about 700 KB.
2023-12-20 15:08:21 -06:00
Rob Suderman 11cc92d4ab
[onnx] Lowerings from `onnx.tan` (#2642)
Started work on the `tan` lowerings for ONNX to Torch. Uses `sin` and
`cos` to represent a `tan`.
2023-12-20 10:09:39 -08:00
Rob Suderman a24aadbfab
[aten] Make `torch.aten.matmul` to `linalg` work for non-broadcasting case (#2659)
Broadcasting for `torch.aten.matmul` is optional so a MxN with NxK
matmul should be legalized to a `linalg.matmul`.
2023-12-20 10:09:10 -08:00
Andreas Falkenberg ebaab4200f
[ONNX] ONNX -> TORCH for Erf (#2673)
TorchOnnxToTorch
For Erf function
2023-12-19 08:07:27 -08:00
Vivek Khandelwal 8649b84e3f
[MLIR][ONNX] Add OnnxToTorch support for AveragePool op. (#2672)
This commit adds the OnnxToTorch support for AveragePool op.

Signed-Off By: vivekkhandelwal1424@gmail.com
2023-12-18 18:17:11 -06:00
saienduri 698ff3a736
[MLIR][ONNX] Add OnnxToTorch support for Reduction Ops (#2657)
This commit adds the OnnxToTorch support for ReduceSum, ReduceMean, and
ReduceMin ops.
2023-12-18 12:37:31 -08:00
John Wu deacb8ef38
[MLIR][ONNX] Add OnnxToTorch support for Gelu (#2647)
This commit adds the OnnxToTorch support for Gelu op.

---------

Co-authored-by: Rob Suderman <suderman@google.com>
2023-12-18 10:57:08 -08:00
Rob Suderman 791c666479
[torch] Lower `torch.aten.sinh` to `linalg` (#2662) 2023-12-18 09:15:12 -08:00
Rob Suderman ae1a6e4a5a
[onnx] Lower `onnx.Gemm` to `torch` (#2663)
General lowering for `onnx.Gemm` to `torch`
2023-12-16 10:47:58 -08:00
Andreas Falkenberg cee8563060
[onnx] Support of onnx.Greater, onnx.Less, onnx.GreaterOrEqual to Torch (#2649)
The three remaining compare operations
onnx.Greater 
onnx.Less 
onnx.GreaterOrEqual

Are also added with this push request. 
This concludes a set of basic tensor compare functions.
2023-12-16 12:42:11 -05:00
Rob Suderman 61888690bb
[onnx] Add support for `onnx.sinh` (#2643)
Adds a lowering from `onnx.sinh` to `aten.sinh`. This includes adding
the `aten.sinh` operator.
2023-12-15 21:23:51 -08:00
Rob Suderman 705ea958ae
[onnx] Lowerings from `onnx.transpose` (#2641)
Lowerings for `transpose` from ONNX to `aten`. Implementation depends on
making multiple `aten.transpose` operations swapping pairs of dimensions.
As `onnx.transpose` can swap around any dimensions it may require
constructing multiple `aten.transpose`.
2023-12-15 15:30:05 -08:00
Quinn Dawkins 030b0140d4
[TorchToLinalg] Lower aten.cat to tensor.concat (#2650)
This replaces the lowering of aten.cat with tensor.concat, allowing more
efficient handling of concatenations in downstream flows. The refbackend
populates concat decomposition patterns that can be used to recover the
previous lowering.
2023-12-15 15:45:32 -05:00
Rob Suderman 061af696ce
[onnx] Lowering for `onnx.shape` to `torch` and `tensor` (#2648)
Includes the lowering from the `aten` equivalent to `tensor` operations.
2023-12-15 11:37:49 -08:00
Gaurav Shukla eb9249e601
[ONNX][MLIR] Add support for LeakyRelu and GatherElements op (#2655)
This commit adds support for `LeakyRelu and GatherElements` op in the
onnx pipeline.

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2023-12-15 11:18:28 -08:00
saienduri f59c01fd2f
[MLIR][ONNX] Add OnnxToTorch support for q-z ops (specific ops in description) (#2601)
This commit adds the OnnxToTorch support for Reciprocal, Round,
ScatterElements, Sigmoid, Sin, Tanh, Sqrt, Sub, Sum, Where, Xor,
Squeeze, Unsqueeze ops.
For reviewers, the ops that weren't trivial and probably require extra
review are Sum, Squeeze, and Unsqueeze.
2023-12-15 09:36:18 -08:00
Andreas Falkenberg 4ec8b9fc02
[onnx] add support for onnx.LessOrEqual (#2639)
Added the less or equal operation to OnnxToTorch. 
onnx.LessOrEqual

---------

Co-authored-by: root <andreas.falkenberg@amd.com>
2023-12-14 22:23:23 -05:00
Rob Suderman 4857606ffe
[onnx] Lowerings from `onnx.selu` (#2634)
Lowerings for `selu` lowerings for ONNX to the corresponding torch
implementations. Torch's `selu` implementation has fewer features so
we use the a generalized `elu` with the input scale set to `1.0`.
2023-12-14 08:53:47 -08:00
John Wu 42392bc845
[MLIR][ONNX] Add OnnxToTorch support for matmul ops (#2629)
This commit adds the OnnxToTorch support for Matmul.
2023-12-13 09:35:32 -08:00
Stella Laurenzo ed4df38e8d
[onnx] Add torch-mlir-import-onnx tool. (#2637)
Simple Python console script to import an ONNX protobuf to the torch
dialect for additional processing.

For installed wheels, this can be used with something like:

```
torch-mlir-import-onnx test/python/onnx_importer/LeakyReLU.onnx
```

Or from a dev setup:

```
python -m torch_mlir.tools.import_onnx ...
```
2023-12-12 22:01:30 -08:00
Stella Laurenzo 74f7a0c9d6
Upstream the ONNX importer. (#2636)
This is part 1 of 2, which will also include upstreaming the FX
importer. I started with ONNX because it forces some project layout
updates and is more self contained/easier as a first step.

Deviating somewhat from the RFCs on project layout, I made the following
decisions:

* Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks
already has opened up that namespace and it seemed to fit. Better to
have fewer things at that level.
* Setup the build so that the root project only contains MLIR Python and
pure Python deps (like the importers), but this can be augmented with
the `projects/` adding more depending on which features are enabled.
* The default build continues to build everything whereas in
`TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a
`torch-mlir-core` wheel with the pure contents only.

`onnx_importer.py` and `importer_smoke_test.py` are almost verbatim
copies from SHARK-Turbine. I made some minor local alterations to adapt
to paths and generalize the way they interact with the outer project. I
expect I can copy these back to Turbine verbatim from here. I also
updated the license boilerplate (they have the same license but slightly
different project norms for the headers) but retained the correct
copyright.

Other updates:

* Added the ONNX importer unit test (which also can generate test data)
in lit, conditioned on the availability of the Python `onnx` package. In
a followup once I know everything is stable, I'll add another env var
that the CI can set to always enable this so we know conclusively if
tests pass.
* Moved the ONNX conversion readme to `docs/`.
* Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` ->
`TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the
JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-12 19:02:51 -08:00
Frederik Harwath b656c674ee Implement e2e support for aten.acos op
This depends on a change in the LLVM core repository which adds acos
support to the MLIR Math dialect.
2023-12-12 10:52:02 +01:00
Vivek Khandelwal 0b4422a253 [MLIR][ONNX] Add OnnxToTorch support for bitwise and math ops
This commit adds the OnnxToTorch support for BitwiseXor, BitwiseOr, Div, Equal, Cast,
Ceil, Floor, Cos, and Clip op.
This commit also adds the TorchToLinalg support for aten.clamp.Tensor and aten.clamp_min.Tensor op.

Signed-Off By: vivekkhandelwal1424@gmail.com
2023-12-11 19:36:01 +05:30
Quinn Dawkins 141202bc01
[TorchToLinalg] Fix integer type handling for aten.mm (#2615)
Despite aten.mm requiring the input and output types match, we still opt
to maintain signedness semantics in case later passes try to do any sort
of integer type narrowing.
2023-12-07 00:13:53 -05:00
Sambhav Jain 44f6942796
Bump LLVM and StableHLO (#2598)
Bump LLVM to `5e5a22caf88ac1ccfa8dc5720295fdeba0ad9372` and StableHLO to
`83f095e7217c897f1eccac5652600ceb944cb0e0`.

Bazel GHA:
https://github.com/sjain-stanford/torch-mlir/actions/runs/7027647674
2023-11-28 22:12:24 -08:00
Vivek Khandelwal dc9ea08db5 [MLIR][ONNX] Add OnnxToTorch support for atan and bitwise ops
This commit adds the OnnxToTorch support for Atan, Bitshift, BitwiseAnd,
and BitwiseNot op.
This commit also adds the TorchToLinalg support for AtenBitwiseLeftShiftTensorOp.

Signed-Off By: vivekkhandelwal@nod-labs.com
2023-11-28 17:19:07 +05:30
Stella Laurenzo e06efc5136
Initial TorchOnnxToTorch conversion pipeline. (#2585)
Adds a pipeline to convert custom ops and metadata represented as
`torch.operator` custom ops to corresponding `torch` ops where possible.

This is part of a multi-part approach for building ONNX import in as a
regular feature of torch-mlir. It is focused on the conversions vs the
infra. We will end up maintaining a [pure-python
importer](https://github.com/nod-ai/SHARK-Turbine/blob/main/python/shark_turbine/importers/onnx_importer.py)
to go with this in torch-mlir, and we will also maintain test case
generation utilities derived from it.

I have left substantial documentation in the README of the conversion
directory, including the recommended approach that we will take to keep
building this out.

(note that this organizes the code to coincide with the refactoring in
#2442 versus the current flat arrangement)
2023-11-21 21:02:55 -08:00
Zhekun(Josh) Zhang d67afa9e95
[Torch] Add fold rule for AtenMaskedFillTensorOp to AtenMaskedFillScalarOp (#2543) 2023-11-21 13:26:17 +08:00
James Newling 647f2f5076
Additional tests for view lowering (#2584)
The logic for lowering the aten view op to linalg is fairly complex. 
In this PR I have tried to follow all non-failing paths through the 
lowering and add unit tests where they're missing.

There is 1 logical change to the lowering: redundant tensor.cast ops
(same source and destination type) are folded.
2023-11-20 17:35:25 -08:00
Stella Laurenzo 5eae0adff1
Breakup python pytorch deps (#2582)
This lifts the core of the jit_ir_importer and ltc out of the pt1
project, making them peers to it. As a side-effect of this layering, now
the "MLIR bits" (dialects, etc) are not commingled with the various
parts of the pt1 project, allowing pt1 and ltc to overlay cleanly onto a
more fundamental "just MLIR" Python core. Prior to this, the Python
namespace was polluted to the point that this could not happen.

That "just MLIR" Python core will be introduced in a followup, which
will create the space to upstream the FX and ONNX pure Python importers.

This primary non-NFC change to the API is:

* `torch_mlir.dialects.torch.importer.jit_ir` ->
`torch_mlir.jit_ir_importer`.

The rest is source code layering so that we can make the pt1 project
optional without losing the other features.

Progress on #2546.
2023-11-19 12:10:19 -08:00
James Newling dad1f012f6
Add verification for torch permute op (#2551)
- adds support for an optional verifier to the generated torch op
tablegen (GeneratedTorchOps.td)
- uses the above to add a verifier for the torch permute op. 

Motivation: I hit an unclear error from linalg while developing a
decomposition pass for pixel_shuffle. The error would have been clearer
if the problem had been detected earlier in the invalid aten.permute op.

Testing: new tests added. To run added tests, from the base directory
run

```
 ./build/bin/llvm-lit  test/Dialect/Torch/invalid.mlir
 ```
2023-11-15 11:47:54 -08:00
Yuanqiang Liu 3ab790c50a
[Torch Dialect] add canonicalize for aten.numel (#2562) 2023-11-11 12:16:53 +08:00
Stella Laurenzo 6961f0a247
Re-organize project structure to separate PyTorch dependencies from core project. (#2542)
This is a first step towards the structure we discussed here:
https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20

There are two primary goals:

1. Separate the core project (C++ dialects and conversions) from the
hard PyTorch dependencies. We move all such things into projects/pt1 as
a starting point since they are presently entangled with PT1-era APIs.
Additional work can be done to disentangle components from that
(specifically LTC is identified as likely ultimately living in a
`projects/ltc`).
2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed
without needing to co-exist with the original TorchScript path.

Very little changes in this path with respect to build layering or
options. These can be updated in a followup without commingling
directory structure changes.

This also takes steps toward a couple of other layering enhancements:

* Removes the llvm-external-projects/torch-mlir-dialects sub-project,
collapsing it into the main tree.
* Audits and fixes up the core C++ build to account for issues found
while moving things. This is just an opportunistic pass through but
roughly ~halves the number of build actions for the project from the
high 4000's to the low 2000's.

It deviates from the discussed plan by having a `projects/` tree instead
of `compat/`. As I was thinking about it, this will better accommodate
the follow-on code movement.

Once things are roughly in place and the CI passing, followups will
focus on more in-situ fixes and cleanups.
2023-11-02 19:45:55 -07:00
Zhekun(Josh) Zhang 88d4c475d3
[Torch] Fix mixP case for non value semantic ops (#2540)
NonValueSemantic Ops like Add_, div_, etc. expect result DType to be the
same as the first input. However, current implementation would result in
wrong result type for case like:

```python
a = torch.randn(3, 3).half() # float16
b = torch.randn(3, 3) # float32
a += b # i.e. torch.ops.aten.add_(a, b)
```
torch expects `a` to be float16, but dtype refinement would infer
float32 type, since it's replaced by `aten.add`.
2023-11-02 12:40:08 +08:00
Daniel Garvey 4901773f77
add uncovered cases in view lowering (#2524)
removes unecessary checks from empty strided
2023-11-01 21:56:44 -05:00
Ze Zhang 4279b750da
update AtenClampOp in torch-to-tosa to handle fp inputs (#2516)
As titled.

---------

Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
2023-10-17 14:49:47 -07:00
Chi_Liu 14a4da923b
Update llvm-project to b44b3494f60296db6aca38a14cab061d9b747a0a (#2511)
The main purpose is to bring in the new mesh dialect change.
https://github.com/llvm/llvm-project/pull/68007
2023-10-16 19:29:48 -07:00
Ze Zhang f2c53b8ca5
Add aten.isclose support and its torch-to-tosa lowering (#2512)
Add aten.isclose op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests


To test e2e tosa lowering:
`python -m e2e_testing.main -v -c=tosa`

---------

Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
2023-10-16 09:44:53 -07:00
Ze Zhang e649e06b7b
Add aten.unflatten.int support and its torch-to-tosa lowering (#2509)
Add aten.unflatten.int op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests

To test e2e tosa lowering:

`python -m e2e_testing.main -v -c=tosa`

---------

Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
2023-10-13 18:39:41 -07:00
Quinn Dawkins 6f81ad7293
[TorchToLinalg] Improve broadcast lowerings in strict symbolic modes (#2505)
With strict symbolic shapes, we can assume numpy-style dynamic
broadcasts never occur. This improves the lowering in the presence of
this assumption.
2023-10-05 15:15:26 -04:00
Quinn Dawkins ae72eec224
Improve aten.broadcast_to folder when in strict symbol mode (#2504)
Strict symbolic shapes allow us to assume numpy-style dynamic broadcasts
never occur. This allows us to strengthen the folder for broadcasts to
cases where the rank is the same and all shapes match (including dynamic
sentinel values).
2023-10-05 09:02:10 -04:00
Stella Laurenzo 860be09a39
Elide dynamic broadcast checks when in strict symbolic shapes mode. (#2496)
When importing dynamic shaped programs from Dynamo, via torch.compile or
torch.export, we can assume that strict symbolic shape checks have been
done prior to generating torch IR. Among other shape checking, this
eliminates the case where an unknown dimension can be dynamically '1' in
a way that signals a broadcast.

Adds a `isAssumingStrictSymbolicShapes` utility which consults a
`torch.assume_strict_symbolic_shapes` attribute on an enclosing scope
and returns true if present.

In the linalg pipeline, many runtime checks are elided when this returns
true.
2023-09-29 16:45:48 -07:00
Stella Laurenzo a00a0d4bfb
Integrate llvm-project and mlir-hlo. (#2454)
Corresponding commits:

* mlir-hlo: 16886a108eff5197f816ca0f1950cc5ff1b078d9
* stablehlo: 77a59815a82b34f7b08ed2d42a711d9920682d0e
* llvm-project: 4acc3ffbb0af5631bc7916aeff3570f448899647

* Adapt to ByteCodeOpInterface changes.
* Adapt to RegionBranchPoint changes: https://reviews.llvm.org/D159116
* Adapt inferReturnTypes to get the value from properties.
* Adapt invalid.mlir to properties syntax
* [TOSA] Align with custom assembly format change.
* [TOSA] handle change of axis to int32 type
* [TOSA] Restore improper convert to i32

Landing with Windows broken (it cannot be fixed because of the way the mlir-hlo dep is inserted). Will followup with an untangling.
---------

Co-authored-by: TatWai Chong <tatwai.chong@arm.com>
Co-authored-by: Eric Kunze <eric.kunze@arm.com>
2023-09-12 15:09:57 -07:00
Bruce Kim cd1c7df8be
[MLIR][TORCH] Add E2E support for view_as_real op (#2419)
* view_as_real test case, allow dtype in testutils.randn

* abstract python upstream func implemented

* fixed upstream dtype func, implemented view_as_real backend op

* formatted AtenViewAsRealOp, removed change in e2etest/framework

* removed test suit from reshape_like.py, because it's moved to basic.py

* implemented C-API wrapper for mlirComplexF128 type

* fixed torch.complex dtype width in MLIR and Torch MLIR, deleted float16 dtype dict

* Changed IR input of aten fft_fft unit test

* code refactored

* code refactored and fixed ci test

* refactored: removed white spaces, and rolled back to having both input/output affine expr

* refactored: deleted output affine expr to reduce redundancy

* xfail ltc backend

* removed ComplexImag and ComplexReal from torchdynamo xfail set

* copied and pasted from main branch as there's no change to be made in this file

* refactored abstract_interp_lib_gen.py

* refactored: torchtypes.td, formatted, removed commented out code
2023-09-01 21:12:01 -07:00
Quinn Dawkins 1fc4314b62
Add folder for aten.broadcast_to on unchanged static shapes (#2421) 2023-09-01 14:50:34 -04:00
JianzheXiao 17d02811d5
[Torch Dialect] add folder for aten.any.bool (#2388)
* update

* update

* update

* update

* update

* update

* update
2023-08-30 17:29:03 +08:00
jinchen62 1682b540bf
Prototype passes for lowering quantized group matmul (#2402)
* Support brevitas custom op (#2320)

* f16 change for brevitas

* Adapt the change of brevitas quant custom op name

* Add unit tests

* Make brevitas conversions isolated

* Address the comments

---------

Co-authored-by: dan <danimal197@gmail.com>
2023-08-29 21:25:45 -07:00
Jiawei Wu 4c9d234b01
revert canonicalizer for PrimListConstructOp (#2408) 2023-08-22 09:18:39 +08:00
Jiawei Wu 60bad54f27
[Torch Dialect] replace none-index in aten.Index.Tensor's param by manually generating it (#2344)
* [Torch Dialect] replace none-index in aten.Index.Tensor's  param by manually generating it
Co-authored-by: Jiawei Wu <wujiawei.aml@bytedance.com>
Co-authored-by: Jianzhe Xiao <jianzhe.xiao@bytedance.com>

* minor typo fix

* add new failed e2e tests for ltc

* fix typo

* Address comments

* Add more e2e tests

* add failed e2e tests for LTC

* address comments

* remove decomposition for AtenIndexTensorHackedTwinOp
2023-08-15 19:36:08 +08:00
Ramiro Leal-Cavazos ff762100b8
Add handling of namespaces to library generator (#2391)
When using custom ops, sometimes PyTorch will insert namespaces to the
abstract interpretation function name in the format:
`__torch__.{namespace_1}.{namespace_2}...{op_name}`.  The extra
namespaces are not part of the abstract interpretation function name,
so it needs to be removed before generating the library of MLIR
snippets of abstract interpretation functions. This commit adds
support for removing the namespace information.
2023-08-11 09:56:19 -07:00
Jiawei Wu 4c12aceb81
[Torch-Dialect] add canonicalizer for prim::ListConstruct op (#2306)
[Torch-Dialect] add canonicalizer for prim::ListConstruct op
2023-08-08 10:28:11 +08:00
Gleb Kazantaev fb52a73cbe
LTC->MLIR Debug Info support (#1922)
* LTC->MLIR Debug Info support

* SW-95317 Propagate Lazy->Jit->MLIR scope name.

* Enhance location information based on op names

Currently, the location information attached to the ops just considers
the filename, line number and column number. Attaching operation name
would help identify the type of computation by just looking at the
profile of execution.

* Update locations logic; updated debug-info.py test

* Use {scope}/{op_name} format to track names by default

---------

Co-authored-by: Gleb Kazantaev <gleb.kazantaev@cerebras.net>
Co-authored-by: Mark Browning <mark@cerebras.net>
Co-authored-by: Vimal Patel <vimal@polymagelabs.com>
2023-08-02 10:29:11 -04:00
Matthias Gehre 0a67411719
test/CAPI/CMakeLists.txt: Depend on FileCheck (#2329)
I saw test failing when FileCheck wasn't already build
2023-07-25 10:11:55 +02:00
Matthias Gehre c56cb531d5
Ignore constants in the legality error (#2328) 2023-07-25 10:11:40 +02:00
Jiawei Wu 026e8db2e4
[Stablehlo] add converter for aten.scatter.src op (#2295) 2023-07-24 10:14:45 +08:00
Alexandre Rames 1e468e8294 Fix canonicalization of `torch.prim.TupleUnpack`. 2023-07-20 20:08:46 +02:00
Alexandre Rames a20422ce65 Support `DerefineOp` in `RefinePublicReturn`. 2023-07-20 20:08:46 +02:00
Alexandre Rames 4847563bed Clean up verification of calling conventions.
The implementation at this place was a remnent of the times the pipeline was
run only once.
Rely instead on the backend verification, after optimizations have had an
opportunity to resolve some uncertainties. (e.g. `!torch.optional`).
2023-07-20 20:08:46 +02:00
Matthias Gehre 64d7626a52
Fixes for split tensor and slice (#2314)
* RecomposeComplexOps: Remove dead slice op

* lib/Dialect/Torch/IR/TorchOps.cpp: Fold slice ops even when they are on non-value tensors

* lib/Conversion/TorchToTosa/TorchToTosa.cpp: Fix slice start/end out of range/none

* lib/Dialect/Torch/IR/TorchOps.cpp: AtenSliceTensorOp::fold: Fold slices that go from 0:int_max

* More tests for aten.split.Tensor
2023-07-20 09:53:54 +02:00
Jiawei Wu 3f843c8fd9
[torch-dialect] fix aten.type_as op's folder (#2283)
[torch-dialect] fix torch.type_as op's folder by decomposing it to prim.dtype + aten.to_dtype
2023-07-20 09:51:58 +08:00
Ramiro Leal-Cavazos 718f53ff8a
Fix handling of `!torch.number` in abstract interpretation library (#2309)
In PyTorch, the `NumberType` is equal to `Union[int, float,
complex]`. However, the abstract interpretation library was treating
the `NumberType` as `Union[int, float]`, resulting in type mismatches
when reifying certain dtype functions. This commit fixes the type
inconsistency by having the abstract interpretation functions take as
an input a `Union[int, float, complex]` for the ops that take
`!torch.number` inputs.
2023-07-17 09:52:04 -07:00
Jiawei Wu c7fa42b7d3
[Torch Dialect] Add canonicalizer for aten.to.other op (#2273)
Canonicalize aten.to.other to prim.device + prim.dtype + aten.to.device
Co-authored-by: wujiawei.aml <wujiawei.aml@bytedance.com>
2023-06-30 09:43:08 +08:00
Yuanqiang Liu 449cfb8375
[Torch Dialect] add more scalar op folders (#2265) 2023-06-29 10:37:13 +08:00
Yuanqiang Liu 1ea2b57ab7
[Torch Dialect] add folder for aten.add (#2264)
* [Torch Dialect] add folder for aten.add

* update

* update

* update
2023-06-27 10:55:28 +08:00
Yuanqiang Liu 96b14e952e
[Torch Dialect] Support aten.device.with_index (#2254) 2023-06-23 01:07:14 +08:00
Vivek Khandelwal f6a6cfea4e
[MLIR][TORCH] Add support for negative index values for index.Tensor op (#2233)
This commit adds the support for index.Tensor op when the index values
are negative. This commit wraps around the index values by checking
their values at run time.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-06-16 14:21:04 -05:00
Yuanqiang Liu 7c6961bcbf
[Torch Dialect] Support aten.cuda and add canonicalizer for aten.cuda (#2231) 2023-06-14 09:56:39 +08:00
Maksim Levental 0caaf8d32a
Bump LLVM (#2176)
* Bump LLVM

---------

Co-authored-by: Matthias Gehre <matthias.gehre@xilinx.com>
2023-06-13 16:17:23 +02:00
Yuanqiang Liu ddea56a832
[Torch Dialect] fix torch.uint8's dtype infer (#2227) 2023-06-13 10:38:20 +08:00
Christopher McGirr b461daa06e
fix(TorchToTosa.cpp): adjust torch->tosa div conversion (#2200)
check the return type of the division to figure out whether to use
the floating point implementation of a division or to use the integer.

the issue rose from the fact that the inputs are all integer but the
result was casted to floating point. The conversion then chose to
use the integer implementation of division which is not legal in tosa
when all the inputs get casted to floating point.

fix(TorchToLinalg): AtenDivScalarOp

upcast self operand as well if applicable, the self operand must also
be casted to float as it can be an integer.
2023-06-12 11:18:38 +02:00
Matthias Gehre 27a3d09917
Torch: Fold RuntimeAssertOp when condition is true (#2198) 2023-06-09 19:06:25 +08:00
Yuanqiang Liu 5a7bf4e4cb
[Torch Dialect] Add canonicalize pattern for aten.is_floating_point (#2194)
* [Torch Dialect] Add canonicalize pattern for aten.is_floating_point

* implement as fold

* add lit test
2023-06-07 17:05:31 +08:00
Vivek Khandelwal da886280fe
[MLIR][TORCH] Add E2E support for aten.tril op (#2202)
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-06-05 16:17:01 -07:00
Ramiro Leal-Cavazos dff3405d5a
Add alias analysis for cast-like ops to maximize-value-semantics (#2160)
When `use_tracing=True` is used to import a model into Torch-MLIR,
several casts get inserted in the IR to bridge the untyped inputs and
outputs with the typed body of the computation. These casts create
extra aliases of tensors that cause the current analysis in
`maximize-value-semantics` to fail.

In particular, the `maximize-value-semantics` analysis assumes that the
only valid alias right after an overwrite is the overwritten
alias. So, if there is a use of a casted version of the overwritten
alias after the overwrite, the analysis fails.

This commit improves the analysis by identifying all cast-like aliases
of the overwritten alias and allowing such aliases to be used after an
overwrite.

Because this issue only arises when using tracing, it cannot be
currently tested e2e, so only lit test is added.
2023-05-25 17:05:41 +00:00
Zhekun Zhang f0b7b63be0
[Stablehlo] Add aten.uniform lowering (#2101)
* add uniform stablehlo lowering

* add unit test

* new line

* rm redundant file

* Empty commit, trigger test

* fix include

* address comments

---------

Co-authored-by: zhekun.zhang <zhekun.zhang@bytedance.com>
2023-05-25 10:32:55 +08:00
TatWai Chong ed4ecb072f
[tosa] support lowering basic torch binary ops with mixed dtypes (#2122)
Lowering torch operations that allow different compatible data types
in its operands to tosa end up generating invalid tosa IR with mixed
data types. In tosa spec, certain operations (generally element-wise
operations) require all operands to have the same data type.

Add wrapper functions for those element-wise tosa ops to perform op
creation with type conversion if necessary.
2023-05-18 17:12:18 -07:00
Ramiro Leal-Cavazos de02b56e17
Replace RefineTypes with dtype functions (#2105)
This commit adds dtype functions for all the torch ops that did not
previously have one and removes the pass `RefineTypes`, since the
abstract interpretation library now takes care of all the dtype
propagation.

All dtype functions added are tested except for
- `aten.embedding`
- `aten._embedding_bag`
- `aten.embedding_bag`

These functions need a change to the testing framework to allow
specifying the actual data inside the tensor used for testing. I will
fix this in a follow up patch.

Co-authored-by: Jiahao Li <liplus17@163.com>
2023-05-12 13:40:45 -07:00
Sean Silva d7614c261d Integrate LLVM
LLVM: 26ee8947702d79ce2cab8e577f713685a5ca4a55
MHLO: 4805d8498dfb81566076f56f52273b426c1cc5bf

Per: https://github.com/llvm/torch-mlir/issues/1178#issuecomment-1538492185
2023-05-09 10:14:27 -07:00
Chi_Liu 51e0a2c933
[Stablehlo] Add stablehlo support for aten.abs (#2068)
Co-authored-by: AmosLewis <Amos_Lewsi@foxmail.com>
2023-05-08 22:13:00 -07:00
Yuanqiang Liu ef6dae6ae2
[Linalg] fix lowering reduce max with -inf (#2097) 2023-05-08 09:17:49 -07:00
Yuanqiang Liu 0096ceae2f
[Stablehlo] fix reduce max init_value with -inf (#2064)
* [Stablehlo] fix reduce max init_value with -inf

* update
2023-05-06 12:05:51 -07:00
Zhekun Zhang 0cf9ee340b
[Torch Dialect] Add to.dtype_layout canonicalize patterns (#2062)
* add to.dtype_layout canonicalize patterns

* update comment

---------

Co-authored-by: zhekun.zhang <zhekun.zhang@bytedance.com>
2023-05-02 20:06:02 -07:00
Ramiro Leal-Cavazos 96d662647f
Fix import of constant bool tensor parameters (#2047)
Bool tensors are represented in TorchScript as an array of
`int8_t`s. However, when importing them into Torch-MLIR, the importer
was assuming the array had `int32_t` elements, leading to the importer
reading into memory that was out of bounds. This commit fixes the
casting of the bool tensor.
2023-04-20 18:38:48 -07:00
Chi_Liu f3d1eda09f
[TOSA] Add aten.abs support (#2032) 2023-04-14 08:43:39 -07:00
Zhekun Zhang 1bd5747ca3
[StableHlo] Fix transposed convolution conversion (#2026)
* fix conv bwd

* fix

* fix group case

* clean up

---------

Co-authored-by: zhekun.zhang <zhekun.zhang@bytedance.com>
2023-04-13 11:24:39 -07:00
Yuanqiang Liu 3e83a86354
[Torch Dialect] fix isValidSubtype with dynamic dim (#2018) 2023-04-11 01:02:18 -07:00
Vivek Khandelwal 98747d09a8 [MLIR][TORCH] Add support for prims::view_of op
This op does nothing and just returns the input operand as the
result of the op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-04-11 07:58:10 +05:30
Vivek Khandelwal e90ea3d7ab [MLIR][TORCH] Extend implementation of aten._index_put_impl op.
This commits adds the support for cases for index_put_op:
1.) where index is a 2-d tensor.
2.) where indices is a list of tensors and none, with exactly
2 non none tensors along the consecutive dimensions.

This commit also adds a utility to compute the broadcast shape
given the two input tensors.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2023-04-05 14:04:30 +05:30
Alexandre Rames d24fa71368
Minor fixes for `ConvertTorchConversionToMLProgram`. (#1991)
* Only create the global seed variable if it does not exist already.
* Make the pass a module pass. A func pass may not modify its parent op.
2023-04-04 09:09:58 -07:00
Yuanqiang Liu c86f46bd70
[test] rename TorchToMhlo to TorchToStablehlo (#1995) 2023-04-03 18:41:25 -07:00
Ramiro Leal-Cavazos e0f301c890
Add `extra_library` kwarg to `torch_mlir.compile` (#1986)
This commit adds the ability to specify extra abstract interpretation
functions in `torch_mlir.compile` to use during type refinement. This
allows users to easily add custom ops without having to interact with
MLIR or C++ directly.
2023-03-30 09:20:19 -07:00
Ramiro Leal-Cavazos d803ab4eeb
Cast `number` to `float` when shape function takes Scalar arg (#1978)
To keep things simple in shape functions, `Scalar` inputs are
considered `float`s. This means that when inserting the shape
functions into the IR, we must cast any `!torch.number`s into `float`s
so that the operand type matches the expected type in the shape
function. This commit adds the cast from `Scalar` to `float`.
2023-03-28 09:30:31 -07:00
Maksim Levental 953ea39cb5
handles 2,3,4 from https://github.com/llvm/torch-mlir/issues/1963 (#1964) 2023-03-24 21:50:01 -05:00
Michael Feliz 2389729fb9
Add support for aten_remainder in TorchToTosa (#1966) 2023-03-23 17:55:58 -07:00
Ramiro Leal-Cavazos eae3ff7f1c
Change dtype functions interface to take ints tuple for each tensor (#1965)
The original design for the dtype functions outlined in
https://github.com/llvm/torch-mlir/issues/1462 was unable to properly
handle ops that take optional tensors as an input when the optional
tensor has a value of None. By the time the op gets imported into
torch-mlir, if an optional value is None, all information about the
original type is lost from the op type signature, preventing
torch-mlir from knowing if a value of None was from an optional tensor
or not, which was crucial in the original design since each tensor
argument must be turned into two separate arguments for the dtype
function.

This commit changes the interface to dtype functions such that each
tensor turns into a tuple of two ints, the first representing the rank
of the tensor and the second the dtype of the tensor. Since now there
is a one-to-one correspondence between the operands of an op and the
operands of its dtype function, there is no ambiguity about which
operand of the op corresponds with which operand of the dtype
function.

To test the implementation, this commit defines dtype function for
convolution op, which takes one optional tensor as an argument.
2023-03-23 11:05:39 -07:00
Sean Silva c319a20828 Update to LLVM 029313cc979ae71877b65794b1063d4e51184cc8
- mergeBlockBefore -> inlineBlockBefore
- move tosa-to-tensor pass ordering

https://github.com/llvm/torch-mlir/issues/1178#issuecomment-1476217922
2023-03-21 04:16:20 -07:00
Matthias Gehre aa5bcb3cf2
LowerToBackendContract: Explicitly error out on unimplemented operator (#1947)
* LowerToBackendContract: Explicitly error out on unimplemented operator

But only reject torch.operator when results are invalid.
Otherwise it might be a custom op that the backend supports.
2023-03-20 16:27:08 +01:00
Ramiro Leal-Cavazos d310bb12bd
Expand definition of tensor subtype to include shape/dtype info (#1929)
Currently, the op `torch.tensor_static_info_cast` will not get
canonicalized away if the result type has any shape or dtype
information. This is because `isValidSubtype` only returns true when
the tensor types being compared are exactly the same or the supertype
has no shape and dtype information. Being unable to canonicalize away
the `torch.tensor_static_info_cast` gets in the way of further
optimizations, such as shape propagation.

This commit improves `isValidSubtype` by adding logic that compares
the shapes and dtypes of the two tensor types to determine of one type
is indeed a valid subtype of the other.

Fixes https://github.com/llvm/torch-mlir/issues/1926
2023-03-10 16:43:57 -08:00
Ziheng Jiang dca2b8a40a
[TORCH] Improve type refinement for aten.cat. (#1908)
* [TORCH] Fix type refinement for aten.cat.

* Add test.

* Address comments.

* Update.

* Update.

* Update.

* Update.

* Update.

---------

Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2023-03-09 16:17:35 -08:00
Zhekun Zhang 1d3a7419c5
[Torch Dialect] add RSub, ScalarImplicit canonicalize (#1899)
* add rsub, scalarimplit canonicalizer

* reformat

* address comments

* fix bug

* fix test

* Update elementwise.py

* resolve merge conflict

* change to 3

* change to 3

* real fix

* fix name

* add torchdynamo fail test

---------

Co-authored-by: zhekun.zhang <zhekun.zhang@bytedance.com>
2023-03-06 17:38:27 -08:00
Ramiro Leal-Cavazos d30af8772b
Handle uninitialized lattice elements in RefineTypes (#1911)
The data-flow analysis does not always propagate information to the
entire graph. This results in some lattice elements being
uninitialized. Currently the lattice elements are not checked to see
if they are uninitialized before rewriting the graph, potentially
resulting in invalid IR (see
https://github.com/llvm/torch-mlir/issues/1896).

This commit adds handling for uninitialized lattice elements.
2023-03-03 08:55:58 -08:00
Yuanqiang Liu 7a8304f935
[Torch Dialect] add folder for aten.sub.float (#1871) 2023-03-02 09:07:33 -08:00
Yuanqiang Liu fc1e091d6a
[Torch Dialect] add aten.pow.int_float op and it's folder (#1872) 2023-02-28 09:36:05 -08:00
Maksim Levental 2eddb3fde7
WIP: No PyTorch dep (#1854) 2023-02-13 14:21:06 -06:00
Yuanqiang Liu 6ab990e1e8
[Torch Dialect] add folder for aten.Int.float (#1863) 2023-02-10 13:59:03 -08:00
Yuanqiang Liu 2f6fdb7f0b
[Torch Dialect] add folder for prim.min.int (#1864) 2023-02-10 13:58:15 -08:00
Ashay Rane 711646d095
mhlo: migrate conversion to stablehlo (#1840)
This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.

This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
2023-02-02 07:29:47 -06:00
Chi_Liu 00fc14a6e1
[TOSA] Add to.dtype i1 to i64 (#1830) 2023-01-27 09:21:06 -08:00
Gleb Kazantaev 3930588a7e
Enable VerifyBackendContract in LTC backend (#1798)
* Enable VerifyBackendContract in LTC backend

* Update VerifyBackendContract pass

* Move convert_scalar_implicit to jit_utils

* Rename VerifyBackendContract to VerifyBackendContractNoDecompositions

* Update verify-backend-contract-error.mlir test
2023-01-24 22:14:17 -05:00
Ramiro Leal-Cavazos 6c86bec04f
build: update llvm tag to 9acc2f37 (#1828)
This commit makes the following changes:

- Update dialects to use fold API `kEmitFoldAdaptorFolder` and update
signature of `fold` methods (see PSA
https://discourse.llvm.org/t/psa-new-improved-fold-method-signature-has-landed-please-update-your-downstream-projects/67618)
- Replace `makeArrayRef` with `ArrayRef` (see
https://reviews.llvm.org/D140896)
- Remove `TypeRange{}` arg from `b.create<scf::IfOp>` since builder no
longer takes that argument
- Make `func`s in `Torch/invalid.mlir` private, since symbol
declarations cannot be public. (see https://discourse.llvm.org/t/rfc-symbol-definition-declaration-x-visibility-checks/2140)
2023-01-25 01:29:42 +00:00
Maksim Levental 8696752eb6
Expose metadata of torch-mlir types (plus verify DictType key and value types). (#1785) 2023-01-16 10:25:02 -06:00
Ashay Rane 4e4a571104
[TOSA] Add LeakyReLU conversion pass (#1790)
* feat(TorchToTOSA): LeakyReLU legalization

* test(LeakyReLU): Add LIT test and enable e2e test

Co-authored-by: Philipp Braun <philipp.braun@amd.com>
2023-01-10 21:42:07 -08:00
Ashay Rane 0faba6d2fc
build: update llvm tag to de3f0f7f (#1789)
Credit to @vivekkhandelwal1 for finding the necessary changes.

Summary of changes:

 - Switch Tosa_IntArrayAttr[N], Tosa_IntArrayAttrUpto[N] to DenseI64ArrayAttr.

 - Replace kNoIterationLimit with kNoLimit. (https://reviews.llvm.org/D140525)

 - Add dependency on MhloPasses when MHLO is enabled

 - Specify result type when using mhlo::DotOp
2023-01-10 17:07:19 -06:00
Raghavan Raman 0979df6589
Fix unsqueeze in Torch to Tosa conversion (#1780) 2023-01-10 11:09:58 -08:00
Ramiro Leal-Cavazos 273664ded6
[custom op] Replace `tanh` dtype function with `expm1` (#1769)
This commit replaces the `tanh` dtype function, which was being used
to test the implementation of dtype functions in
a710237437, with a dtype function for
`expm1`. The dtype function for `expm1` is identical to the `tanh`
one, so the same level of testing is maintained.

Currently, there are ops getting dtype information from the
`RefineTypes` pass and ops getting dtype information from the
`TorchDtypeRefinementPipeline`. Since each pass can only propagete
dtype information for the ops it knows how to handle, some models with
many ops handled in both passes require the two dtype propagation
passes to execute many times, reaching the iteration limit set in the
`LowerToBackendContractPass`. To temporarily avoid this issue while
the migration to `TorchDtypeRefinementPipeline` is finished, this
commit switches `tanh` to `expm1`, since the latter is used a lot less
in large models.
2023-01-03 14:18:26 -08:00
Ashay Rane ac780529b4
Revert e2e support for aten logical or/and/xor/not ops (#1757)
This reverts commit eaab9be207, since it
is causing the post-merge CI tests to fail, causing subsequent PRs to be
blocked.  Specifically, the tests
`ElementwiseAtenLogicalAndOpPromoteBroadcastModule_basic` and
`ElementwiseAtenLogicalXorOpPromoteBroadcastModule_basic` fail because
the oracle does not match the computed result.  This patch reverts the
commit to make the post-merge builds green again.
2022-12-29 21:01:06 -06:00
Jiahao Li eaab9be207
Add e2e support for aten logical or/and/xor/not ops (#1752) 2022-12-26 10:23:38 +08:00
Jiahao Li 49071f86e6
[MHLO] Evaluate RuntimeAssertOp at compile time (#1732) 2022-12-22 17:12:52 +08:00
Tanyo Kwok 297fd3aa47
Revert "reimplement linear lowering torchToMhlo (#1524)" (#1744)
This reverts commit 50b524546f.
2022-12-21 21:24:07 -08:00
zzp_miracle 50b524546f
reimplement linear lowering torchToMhlo (#1524) 2022-12-22 10:15:16 +08:00
Jiahao Li 15b249777b
[Torch][MHLO] Decompose aten.copy op. Lower aten.rsqrt & sigmoid to mhlo. (#1734) 2022-12-22 10:13:59 +08:00
Chi_Liu 9dc09ac8c5
[TOSA] Add aten.gather support for tosa (#1680) 2022-12-21 11:04:07 -08:00
Chi_Liu b2cefc0b64
[TOSA] Add aten.masked_fill.Tensor/Scalar support (#1735) 2022-12-21 08:56:07 -08:00
ataheridezfouli-groq 17ee643aeb
[TORCH] Add Complex Number support (#1673)
Add Complex number dtype support to torch tensors. Add
aten.fft_fft op to test complex numbers.
2022-12-15 21:40:01 +00:00
Ramiro Leal-Cavazos 60db793feb
Pass op legality info to `verifyBackendContractPass` (#1705)
In order to verify if a given IR satisfies the backend contract, the
verifier needs to know if decompositions took place, and if so, which
ops were decomposed and which were not.

This commit adds two arguments to `verifyBackendContractPass` to
specify if decompositions took place and which ops to consider backend
legal, similar to the arguments of `LowerToBackendContractPass`.
2022-12-15 08:32:52 -08:00
Ahmed S. Taei b1f6832849
Add aten.slice.Tensor & aten.cat folders (#1691) 2022-12-13 13:02:47 -08:00
Ramiro Leal-Cavazos a710237437
[custom op] Generalize shape library logic to work with dtypes (#1594)
* [custom op] Generalize shape library logic to work with dtypes

This commit generalizes the shape library logic, so that dtype rules
for ops can also be expressed using the same mechanism. In other
words, each op can now have a shape function and a dtype function
specified in Python that is imported during lowering to calculate the
shapes and dtypes throught a program. For more information about how
to specify a dtype function, see the updated
`docs/adding_a_shape_and_dtype_function.md`.

For those not familiar with how the shape library works, the file
`docs/calculations_lib.md` provides an overview.
2022-12-13 08:25:41 -08:00
Chi_Liu 163d19cce6
[TOSA] Add aten.add/sub.Scalar/Tensor si64 type support (#1604) 2022-12-12 12:13:07 -08:00
Ramiro Leal-Cavazos a54b334578
Allow running DecomposeComplexOps more than once (#1671)
The current implementation of `DecomposeComplexOps` fails if an op
expected to be decomposed does not get decomposed in the first
iteration of the `createTorchSimplificationPipeline` in
`LowerToBackendContractPass`. However, some graphs require multiple
iterations of `createTorchSimplificationPipeline` to fully propagate
all statically knowable information, such as dtypes and shapes, to the
entire graph, sometimes resulting in the need to run
`DecomposeComplexOps` more than once.

This commit changes `DecomposeComplexOps` to use a greedy algorithm
for pattern application and moves the legalization check of ops to the
`LowerToBackendContractPass` to allow for the `DecomposeComplexOps` to
run more than once.
2022-12-08 09:26:38 -08:00
Ramiro Leal-Cavazos 76190e8a3f
Remove unnecessary decompose-complex-ops tests (#1693)
This commit removes lit tests from the `decompose-complex-ops` that
are essentially testing a macro expansion, in accordance with
https://github.com/llvm/torch-mlir/blob/main/docs/architecture.md#dos-and-donts-for-unit-vs-end-to-end-testing .
2022-12-08 08:22:08 -08:00
Ramiro Leal-Cavazos dd35488da5
build: update llvm tag to 798fa4b4 (#1684)
- Support for non-prefixed accessors has been removed. See:
  https://reviews.llvm.org/D136727
- Rename `operands` to `methodOperands` in `prim.CallMethod` since the
  name `operands` overlaps with a builtin method name. See:
  https://reviews.llvm.org/D136727
- Add passes in refbackend to lower memref.subview. See:
  https://reviews.llvm.org/D136377
- Replace `CopyToValueTensorOps` first in `RewriteViewLikeSubgraph` in
  maximize-value-semantics.

  The current implementation of the `RewriteViewLikeSubgraph` pass in
  maximize-value-semantics creates temporarily invalid IR. In
  particular, given a forward slice starting from a
  `CopyToNonValueTensorOp` and ending in `CopyToValueTensorOp`s, the
  pass first replaces all uses of the `CopyToNonValueTensorOp` with
  its operand, which results in all the `CopyToValueTensorOp` users
  having their operand have type `!torch.vtensor`, which is invalid.

  The correct way to do things is to first replace all the
  `CopyToValueTensorOp`s with their operand, and then replace all uses
  of the `CopyToNonValueTensorOp` with its operand.

  This only started failing now because the generated accessor
  `getOperand` for the `CopyToValueTensorOp` now returns a
  `TypedValue<NonValueTensorType>`, which has an assert checking that
  the value returned is of the expected type.
2022-12-07 12:20:41 -08:00
Vivek Khandelwal f416953600 [MLIR][TORCH] Add TorchConversionToMLProgram and MLProgramBufferize pass
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-12-02 13:20:46 +05:30
Vivek Khandelwal e7edcc62fd build: update llvm tag to 147fe9de
Summary of changes:
- Replace call to `MemoryEffectOpInterface::hasNoEffect`
  with `isMemoryEffectFree`.
- Make fix for the dynamic dims, since
  `kDynamicSize` value changed to
  `std::numeric_limits<int64_t>::min()` from `-1` in llvm
- `makeShapeLLVMCompatible` and `makeShapeTorchCompatible`
  utilities convert shapes in order to remain consistent
  with the Torch and MLIR semantics.
- Update tags
  llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
  mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-12-01 13:36:50 +05:30
Ramiro Leal-Cavazos 0983a7f93a
Fix modulus calculation in LCG algorithm of refbackend (#1658)
The current implementation sets the `nextSeed` value to `temp & 127`,
which is wrong. The last step of the LCG algorithm for the multiplier
and increment chosen should be `temp % 2^{64} = temp & (1 <<
63)`. However, because we are dealing with i64 values, the modulus
operation happens automatically, so it is not needed.

See Donald Knuth's values for LCG here:
https://en.wikipedia.org/wiki/Linear_congruential_generator
2022-11-30 08:46:52 -08:00
Tanyo Kwok bbcdb38d99
Revert "Decompose torch.slice_scatter (#1622)" (#1659)
This reverts commit f3f2f10030.
2022-11-30 12:47:13 +08:00
Vivek Khandelwal d9cbf01d1e Revert "build: update llvm tag to 147fe9de"
This reverts commit e45ad313d4.
2022-11-25 12:41:56 +05:30
Vivek Khandelwal e45ad313d4 build: update llvm tag to 147fe9de
Summary of changes:
- Update call to `hasNoEffect` utility
- `KDynamicSize` value changed to
  `std::numeric_limits<int64_t>::min()` from `-1`
- Update tags
  llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
  mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-24 12:44:43 +05:30
Tanyo Kwok f3f2f10030
Decompose torch.slice_scatter (#1622)
* Decompose torch.slice_scatter

* fix compilation error

* update file check

* fix ci

* fix i64 torch.tensor dtype
2022-11-23 18:14:12 +08:00
Vivek Khandelwal da8fdc9f96 [MLIR][TORCH] Fix refine types crash
This commit fixes https://github.com/llvm/torch-mlir/issues/1599.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-23 15:17:37 +05:30
Tanyo Kwok 4aad5ccf39
fix #1626 return type mismatch (#1634) 2022-11-23 15:02:41 +08:00
Vivek Khandelwal 55c7e66aa7 [MLIR][TORCH] Fix mean and mean.dim op for large-sized inputs
This commit fixes the aten.mean and aten.mean.dim op decomposition
for supporting large-sized inputs.
This commit also fixes the formatting for the file stats.py

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-22 08:38:51 +05:30
Vivek Khandelwal 4cbd3927d7 [MLIR][TORCH] Add aten.sort.int op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-20 19:00:41 +05:30
Chi_Liu 29c8f47723
[TOSA] Add aten.clamp op tosa support (#1609)
Co-authored-by: AmosLewis <Amos_Lewsi@foxmail.com>
2022-11-18 13:32:13 -08:00
Sean Silva 39de4d6265 [cleanup] Make diagnostics better
Also remove some unused imports.
2022-11-17 02:09:54 -08:00
Sambhav Jain fc4c8d4ed9
Enable torch-mlir LIT tests in Bazel (#1585)
Adds support to run `.mlir` LIT tests in bazel. 

```
bazel test @torch-mlir//test/...
```

Follow-on PR will contain these updates:
- Add tests to GHA CI workflow
- Add `.py` LIT tests to bazel
2022-11-15 14:02:19 -08:00
Chi_Liu dfe7513a45
[MLIR][TORCH] Fix aten.unsqueeze op (#1578)
The range of the unsqueeze dim is: [-input.dim() - 1, input.dim() + 1), the bug forgets to add 1.
2022-11-14 09:09:15 -08:00
Daniel Ellis a7ac0def45
Move single-tensor-tuple-return test to mlir unit test.
Also, add multiple return test.
2022-11-10 09:23:53 -05:00
Xiafei Qiu 4f173c6e0f
update llvm tag to a2620e00. (#1567)
- also update MHLO to 57ba12a2(branch greencommit/2022-11-07-a2620e00)
- change -pass-pipeline format to make tests pass.
2022-11-10 18:39:28 +08:00
Tanyo Kwok 17bc7c89cc
build: update llvm tag to 74fb770d (#1539)
* build: update llvm tag to 74fb770d

This commit makes the following changes needed to update bump LLVM:

+ replace usages of `tensor::createPadScalarOp`, see https://reviews.llvm.org/D136493
+ Update file checks
2022-11-01 15:27:09 +08:00
Ramiro Leal-Cavazos b723186983
Remove all but one of valsem ops + move fill.Scalar to elementwise (#1531)
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
2022-10-28 15:06:11 +00:00
Ashay Rane a11ea93877
build: update llvm tag to f8b84268 (#1528)
The only change required was to update a test to reflect the changes
in https://reviews.llvm.org/D136541.
2022-10-26 15:33:53 -05:00
Vivek Khandelwal ca87033d2f [MLIR][TORCH] Add E2E support for aten.mse_loss op
This commit adds decomposition for the `aten.mse_loss` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-10-25 21:06:58 +05:30
Chi_Liu ad6f5848cb
[MLIR][TORCH] Add TorchToTosa lowering for aten.where.self op (#1454) 2022-10-18 09:39:39 -07:00
Ramiro Leal-Cavazos 82a3860e25
build: update llvm tag to 4546397e (#1502)
This commit makes the following changes needed to update bump LLVM:

- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)

Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>

Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
2022-10-18 04:22:53 +00:00
Gaurav Shukla da90a25f90 [MLIR][TORCH] Add E2E support for `aten.[div.int|bitwise_or.Tensor]` ops
This commit adds lowering of `aten.div.int` and `aten.bitwise_or.Tensor`
ops. Both these ops are required in order to support bloom_560m model.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-10 22:28:51 +05:30
Vivek Khandelwal d3cc3f1aff [tosa] Add lowering for aten.to.dtype and aten._to_copy op
This commit adds the TorchToTosa lowering for `aten.to.dtype` and
`aten._to_copy` op.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-10-06 12:00:25 +05:30
Vivek Khandelwal 56f9a9b5de [tosa] Add TorchToTosa lowering for torch.prim.NumToTensor.Scalar op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-10-06 12:00:25 +05:30
Gleb Kazantaev 708fa346a6
Fix Base Lazy Backend Type Conversion (#1412)
* Fix c10::prim::Constant conversion; Added CAPI for passes; Added passes to base lazy backend

* Update ivalue_importer to use ImportOptions; Added tests for non-value/value tensor types

* Added tests for scalar Constant import; Updated MB::importFunction to use ImportOptions

* Test updates

* Move back module variable name

* Remove RefineTypes from TorchMlirLoweringContext::Build()

* Rename pass; Remove passes from base lazy backend

* Rename pass to VerifyBackendContractPass

* Aligned cmd pass name; Fixed TorchConversion passes registration
2022-10-04 15:53:28 -07:00
Vivek Khandelwal 9dd5ae8239
[tosa] Add TorchToTosa lowering for aten.arange.start_step op (#1442) 2022-09-30 07:33:41 -07:00
AmosLewis 940959589b [MLIR][TORCH] Add Byte and Char Dtype support 2022-09-30 13:19:31 +05:30
Ashay Rane 0b46462528
Miscellaneous fixes for Windows builds (#1376)
* test: allow spaces in path to Python executable

On Windows, the path to the Python binary may contain spaces, so this
patch adds quotes around the path to the python executable.

Thanks to @sstamenova for suggesting the fix!

* python: remove header file that causes Windows build failures

Similar to https://reviews.llvm.org/D125284, we can safely remove this
header file without affecting the build on either Linux.  It is
necessary to remove this header file on Windows builds since otherwise
it causes build errors.

* python: drop `TORCH_API` from function defined in Torch-MLIR

`TORCH_API` should apply to functions that are either exported by
libtorch.so or ones that are imported from libtorch.so by its downstream
consumers (like Torch-MLIR).  Neither case applies to the
`importJitFunctionAsFuncOp()` function, since it is defined in
Torch-MLIR (and thus outside libtorch.so).  This patch fixes the problem
by dropping `TORCH_API` from that function's declaration.

* python: make output of class anotations deterministic

The `class-annotator-repr.py` test checks for class annotations in a
specific order, but prior to this patch, the order was
non-deterministic, since the code iterated on an _unordered_ map.

This patch makes the iteration order deterministic through two changes:
1. using a sorted map
2. using the class qualified name instead of the address of the class in
memory

* test: use Python3_EXECUTABLE as interpreter path for consistency

This ensures that tests use the Python3 version that was detected using
CMake, instead of whichever python version that happens to be in the
PATH variable when invoking the test.

* test: fix RUN string

The parenthesis syntax does not run on Windows (the shell interprets the
`(` character as part of the path).  Moreover, the ODR violation in the
comment no longer seems to apply.

* python: port parallel test framework to Windows

Since Windows does not support `fork` natively, Python's
`multiprocessing` module needs to use `spawn` on Windows.  However, to
use `spawn`, the multiprocessing module serializes (or pickles) the
worker function and its arguments.  Sadly, the multiprocessing module
(both the default one in Python and the one that is extended in PyTorch)
is unable to serialize lambda functions (see
https://stackoverflow.com/a/19985580) for detals.

Unfortunately, given how our tests are structured, we require that the
function under test is passed as an argument to another function, so we
cannot sidestep our use of lambda functions.

To resolve this problem, this patch makes use of the `multiprocess` and
`dill` Python modules, which together offers a multiprocessing mechanism
that can serialize lambda functions.  The multiprocess module also
offers a process pool, which simplifies the code for our parallel
testing framework.
2022-09-29 12:07:43 -05:00
Vivek Khandelwal bce00c8ed1 [tosa] Fix torch.vtensor.literal lowering
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-09-29 17:03:10 +05:30
JakopinA 8ef0c874c2
Implement Expand/Collapse Functionality for Aten.View (#1353) 2022-09-27 11:08:14 -07:00
Eric Kunze cb1b8796a2
Convert torch si literals into signless for TOSA (#1421) 2022-09-26 16:54:27 -07:00
武家伟 c03aa63325
[MLIR] Add canonicalizer for aten.slice.t op (#1413)
* [MLIR] Add canonicalizer for aten.slice.t op

* Add mlir tests and strength the canonicalizer

* rename variable

Co-authored-by: Vremold <xremold@gamil.com>
2022-09-26 14:35:50 -07:00
Tanyo Kwok 16dd7e2e5f
Fix dynamic shapes type verifications (#1409)
* Fix dynamic shapes type verifications
2022-09-23 20:50:29 +08:00
Tanyo Kwok 061a97c3f2
Replace empty_like && empty_memory_format with full/full_like (#1398)
* Replace empty_like && empty_memory_format with full/full_like

* fix broadcast rank0 tensor
2022-09-23 10:24:36 +08:00
long.chen 797feaf129
[torch-mlir][Tosa] fix during torch.max.dim lower to tosa the reshape's new shape attr mismatch reshape's result type (#1378) 2022-09-16 21:29:56 -07:00
Ashay Rane a9e1014fc7
python: add `CHECK-LABEL` statements to localize checks (#1363)
It seems as though an upstream change in PyTorch has caused the module
dump to include not just the module being tested, but also several
seemingly unrelated functions in the `torch._decom.decompositions`
namespace.  The presence of these new functions caused lit to match
variables against incorrect statements (i.e.  statements in the
unrelated functions instead of the module under test).

This patch inserts `CHECK-LABEL` statements in the failing tests so that
lit ignores these unrelated functions and only checks the statements at
or after the test module definition.
2022-09-13 15:44:13 -05:00
gpetters94 48418b9c22
Fold away type_as (#1358) 2022-09-12 18:59:12 -04:00
Ashay Rane e52e886845
build: update llvm tag to 00d648bd (#1307)
- Update MHLO commit to build with LLVM commit hash 00d648bd
 - Update TorchToMhlo code to work with Stablehlo
 - Re-enabled two failing TOSA tests, thus resolving Github Issue #1231
2022-08-30 14:44:00 -05:00
Sean Silva 0e3ddbac91 Remove VerifyInvariantsBeforeBackendLowering
LowerToBackendContract now checks all this consistently.
2022-08-26 10:24:43 -07:00
Tanyo Kwok 3d0e18bbe7
Add decomposition for aten.roll (#1170)
* Add decomposition for aten.roll

* add e2e unittest

* refine type of torch.roll

* fix aten::cat output type
2022-08-24 08:36:05 +08:00
Tanyo Kwok 9176b5ed29
Add decomposition for aten.flatten.using_ints (#1161) 2022-08-23 11:52:54 +08:00
Sean Silva 01290d134a Add a way for backends to control which ops are legal for them.
We were already hitting many cases where backends different in terms of
the legal ops that they wanted. This caused unnecessary coupling between
the backends. Examples:
- https://github.com/llvm/torch-mlir/pull/1161
- https://github.com/llvm/torch-mlir/pull/862

This PR centralizes all compilation to go through `torch_mlir.compile`
so that we can keep the logic centralized there. We should move these
lists closer to each backend. Especially cases like
https://github.com/llvm/torch-mlir/pull/862 where blocking a
decomposition is necessary to avoid a crash emphasize that the set of
decompositions is tightly coupled to the backend, and should be
"controlled by the backend" and not something arbitrarily tweakable.

Also:
- Fix a small bug in the way we passed through the backendLegalOps
  option.
- Add better error messages in `torch_mlir.compile` for import errors.
2022-08-22 14:16:13 -07:00
武家伟 99fb4c8637
Add folder for ToF64Op and FromF64Op (#1257) 2022-08-22 09:49:39 +08:00
Vivek Khandelwal 65d811e267 [MLIR][TORCH] Fix dynamic cases for aten.index.Tensor 2022-08-19 12:13:20 +05:30
武家伟 7bd173a1c4
[MHLO] Eliminate explicit dynamic output shape generating in converting AtenSliceTensorOp (#1245)
[MHLO] Eliminate explicit dynamic output shape generating in converting AtenSliceTensorOp
2022-08-19 10:14:57 +08:00
Ramiro Leal-Cavazos 9bc606c384
Add support for returning more than one copy of the same tensor (#1228)
One of the simplifications made by the pass `RefinePublicReturn`
currently only happens if the tensor in question only has one
user. However, the current method of checking this does not correctly
handle the case of a user having multiple uses of the same
tensor. This commit makes sure only unique users are considered.
2022-08-18 22:41:45 +00:00
Sean Silva 283e0f141a Add a concept of "backend legal ops".
This is a first step towards formalizing the set of ops in our backend
contract. The goal is to eventually formalize `torch` dialect ops into 3
categories:
1. Legal in backend contract
2. Illegal in backend contract
3. Conditionally legal in backend contract

The "conditionally legal" set are the ops that we can optionally
decompose for backends.

This patch adds relevant pass options for this throughout the compiler,
in preparation for a new set of traits which will formalize this
classification.
2022-08-18 11:46:50 -07:00
Sean Silva 57681f7947 Iteratively run the main simplification pipeline.
This introduces a new pass LowerToBackendContract (better name very
welcome) which performs the bulk of the simplifications that we do,
such as
- shape refinement
- dtype refinement
- maximizing value semantics
- inlining global slots
- decomposing complex ops

The key difference from before is that it iterates the set of
transformations, which can help to break a number of "catch-22" issues
where one simplification depends on another, the latest example being
here:
https://github.com/llvm/torch-mlir/issues/1131

This also exposed that RefineTypes was sometimes crashing/asserting for
certain inputs. This commit hardens it a bit.
2022-08-17 14:54:33 -07:00
Yan Xu 9be8997536
Revert "add native_dropout and related ops pattern (#1211)" (#1230)
This reverts commit c935795086.
2022-08-17 13:48:10 +08:00
武家伟 11a5b5ac52
[MHLO] Add AtenRSubScalarOp conversion pattern to MHLO (#1233)
* [MHLO] Add AtenRSubScalarOp conversion pattern
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-08-17 09:07:36 +08:00
Ashay Rane 84d345c650
build: update llvm tag to 2dde4ba6 (#1229)
Summary of changes:
 - Tensor dialect now sets `emitAccessorPrefix` to prefixed, thus
   requring updates to methods that retrieve arguments
   [https://reviews.llvm.org/D131361]
 - Update MHLO to build with LLVM commit hash 2dde4ba6
 - Replace `AbsOp` with `AbsFOp` [https://reviews.llvm.org/D131325]
 - Replace deprecated `getValue()` with `value()`
   [https://reviews.llvm.org/D131349]
 - Remove `AnalysisState::defaultInitialize()`
   [https://reviews.llvm.org/D131746]
 - Update MHLO MLIR tests to use the updated assembly format
 - Disabled two failing TOSA tests (Github Issue link:
   https://github.com/llvm/torch-mlir/issues/1231)
2022-08-15 23:54:45 -07:00
武家伟 3b3cb99ef8
Generalize canonicalization pattern for more aten.sub/div/mul/add op (#1209)
Generalize canonicalization pattern for more sub/div/mul/add op, but for AtenDivTensorModeOp in 'trunc' rounding mode, we try to fold it.
2022-08-16 13:24:08 +08:00
Yan Xu c935795086
add native_dropout and related ops pattern (#1211) 2022-08-15 09:28:47 +08:00
Ramana Radhakrishnan 738f4fe96a
Rename TorchToStd pass as TorchToArith (#1163)
All the converters in this pass appear to create ops from the
arith dialect. Hence the full rename.

Fix GH Issue #409.
2022-08-10 20:12:51 +01:00
武家伟 87562773f8
[MHLO] Add AtenCatOp conversion pattern to MHLO (#1208)
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
Co-authored-by: Vremold <xremold@gamil.com>
2022-08-09 22:12:34 -07:00
Ashay Rane bb47c166a0
llvm: update tag to 061e0189 (#1180)
Summary of changes:
 - Switch to C++17 (similar to https://reviews.llvm.org/D131348)
 - Update MHLO to build with LLVM commit hash 061e0189
 - Replace deprecated `hasValue()` and `getValue()` with `has_value()`
   and `value()` respectively (https://reviews.llvm.org/D131349)
 - Use `TypedAttr` (https://reviews.llvm.org/D130092)
 - Use updated assembly format of `mhlo.compare` op (commit
   d03ef01e70fbf9afd0fa1976fbb7ed31838929b3 in MHLO repo)
2022-08-08 20:17:35 -07:00
武家伟 351f15424e
[MHLO] Add transposed convolution conversion pattern (#1171)
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-08-09 09:50:07 +08:00
Sean Silva 504de5e701 Rework how global slot initializers work.
Rather than a per-global-slot initializer region, we now have one for
the whole module. For example, it might look like this:

```
torch.global_slot "private" @tensor : !torch.tensor
torch.global_slot "private" @list : !torch.list<tensor>
torch.global_slot.module_initializer {
  %0 = torch.tensor.literal(dense<0.0> : tensor<f32>) : !torch.tensor
  %1 = torch.prim.ListConstruct %0 : (!torch.tensor) -> !torch.list<tensor>
  torch.initialize.global_slots [
    @tensor(%0 : !torch.tensor)
    @list(%1 : !torch.list<tensor>)
  ]
}
```

This new structure allows GlobalizeObjectGraph to create the initializer in a
much simpler way, avoiding the need to reason about whether different slots
alias each other. Reasoning about whether slots alias each other now is the
responsibility of InlineGlobalSlots, which has to do a much more complicated
analysis, implemented using MLIR's dataflow analysis framework.

Recommended review order:
- Check out the new IR constructs in the .mlir files of various passes
- Op definitions (*.td)
- Changes to GlobalizeObjectGraph pass.
- InlineGlobalSlots pass (~total rewrite)
- Misc changes:
  - Moving torchMlirAdjustStaticInformation for sharing with C++ code.
  - EraseModuleInitializer pass

To make this a bit nicer, it would be good to have a `torch.module` op
with an initializer region attached. That would be more invasive though.

This change has highlighted certain aspects of our project layering
which are worth calling out. None of our backends can handle global
slots, so we enforce that there are no global slots before backend
lowering. At an earlier stage in the project, we had aspirations of
transparently handling mutable global state and such, but for reasons
described below, that is no longer a goal. So really global slots should
be seen as a progressive lowering step as part of inlining all the
IValue's in the original program (GlobalizeObjectGraph is also one such
step).

Over time, with insights from work like IREE-JAX, it has become clear
that there isn't a reliable programming model we can compile for users
where we just transparently handle mutable global state (and some other
things, like lists and dictionaries). There is a need for an "outer
program" that orchestrates more restricted subroutines of the kind we
can handle in our compile flow here. The benefit of that is that it
decouples considerations like shapes, dtypes, etc. from the program
constructs used in the outer program. As long as the outer program can
efficiently invoke (pipelining/async/etc.) high-performance
data-parallel numerical subroutines of the kind we compile in our flow
here, then there is a complete programming model. This is also
consistent with the direction of upstream PyTorch which is becoming more
tracing-based (which inherently loses a lot of program structure, which
then has to be applied back with an "outer program" orchestrating the
traced subroutines).
2022-08-08 18:12:06 -07:00
Tanyo Kwok 290d7755fb
importer: add initial support for loading Float16 tensors (#1169)
follow up #761:

    This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
    method to enable the creation of tensors whose base type is Float16.
    This patch also adds a test to validate the IR generation, and it
    updates the test for importing tensors of various types.
2022-08-08 12:37:31 +08:00
Tanyo Kwok 1ee865983b
[MHLO] fix tensor mode aten.div op pattern (#1160)
* [MHLO] fix tensor mode aten.div op pattern

See RFC #999
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-08-06 23:38:06 +08:00
武家伟 c94431f71c
[MHLO] Add convolution op pattern (#1152)
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-08-04 00:41:35 -07:00
武家伟 d030591df9
[MHLO] Init MHLO pooling-like op conversion (#1141)
* [MHLO] Init MHLO pooling-like op conversion and remove 'op' suffix in filenames

Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo tianyou.gty@alibaba-inc.com
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>

See RFC #999
2022-08-04 12:34:22 +08:00
Tanyo Kwok f0a24f59f6
[MHLO] Init MHLO linear op patterns (#1132)
See RFC https://github.com/llvm/torch-mlir/issues/999

Co-authored-by: Bairen Yi yibairen.byron@bytedance.com
Co-authored-by: Jiawei Wu xremold@gmail.com
Co-authored-by: Tianyou Guo tianyou.gty@alibaba-inc.com
Co-authored-by: Xu Yan yancey.yx@alibaba-inc.com
Co-authored-by: Ziheng Jiang ziheng.jiang@bytedance.com
2022-08-03 19:10:54 -07:00
武家伟 636f5acb10
[MHLO] Init MHLO reduce-like op conversion (#1133)
* [MHLO] init reduce-like op conversion from Torch to MHLO
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-08-03 10:47:52 +08:00
Tanyo Kwok 0b23af27d3
[MHLO] support non-constant torch scalar in BasicOps (#1134)
See RFC https://github.com/llvm/torch-mlir/issues/999

Co-authored-by: Bairen Yi yibairen.byron@bytedance.com
Co-authored-by: Jiawei Wu xremold@gmail.com
Co-authored-by: Tianyou Guo tianyou.gty@alibaba-inc.com
Co-authored-by: Xu Yan yancey.yx@alibaba-inc.com
Co-authored-by: Ziheng Jiang ziheng.jiang@bytedance.com
2022-08-03 08:16:31 +08:00
Yan Xu 704efdc259
[MHLO] add aten::gelu op pattern (#1127)
add aten::gelu op pattern, and moved some unit tests from basic.mlir to elementwise.mlir
2022-08-02 15:01:30 +08:00
武家伟 76c976682c
[MHLO] Support for dynamic shape in basic op conversion by introducing CHLO dialect (#1123)
* [MHLO] Support for dynamic shape in basic op conversion by introducing CHLO dialect
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>

* [MHLO] Support I32 as shape tensor dtype

* [NFC] Add a 'TODO' annotation
2022-08-02 12:53:24 +08:00
Jae Hoon (Antonio) Kim 425362263b Clean up Autogen (#1112)
* Remove unnecessary sed in autogen

* Remove .pyc files frrom VCS
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 1bde00c73d Fix LTC Decoupling (#815)
* Initial changes

* Fix up native functions

* Further fix decoupling

* Remove unnecessary ops

* Formatting and copyright banners:

* Add pytorch submodule
2022-07-30 09:40:02 -04:00
PhaneeshB 8b5631d4c5 [MLIR][TORCH] Add decomposition for aten.std.dim Op
Signed-Off By: Phaneesh Barwaria <phaneesh@nod-labs.com>
2022-07-29 23:52:54 +05:30
Vivek Khandelwal d386b8f9e5 [MLIR][TORCH] Add decomposition for aten.var.correction op
This commit adds the decomposition for `aten.var.correction` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com
2022-07-29 11:08:57 +05:30
Vivek Khandelwal 7247c6a3a7 [MLIR][TORCH] Add E2E support for aten.ge.int op
This commit adds lowering of `aten.ge.int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-29 11:08:57 +05:30
Quinn Dawkins 11a8901078
[MLIR][TORCH] Add support for multiple indexing tensors for aten.index.Tensor (#1097)
- Includes a canonicalizer for `aten.add.t`needed for successfully lowering the shape function
 - Only offers support for statically sized index tensors when there is more than one
 - Dynamic shape support remains for single indexing tensors
2022-07-28 19:00:02 -04:00
武家伟 052d2f84dc
[MHLO] Init MHLO basic op conversion (#1092)
* [MHLO] Init MHLO basic Op Conversion
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>

* [NFC] Remove 'from @llvm-project' annotation

Co-authored-by: wujiawei.jw <wujiawei.jw@bytedance.com>
2022-07-27 13:07:51 +08:00
Kevin Kiningham e8f327cc00 Add lowering to linalg for softplus and log1p
Follows existing conventions for unary operators.
2022-07-25 21:25:57 +05:30
Tanyo Kwok 44ead68772
[MHLO] Init MHLO gather op patterns (#1104)
See RFC https://github.com/llvm/torch-mlir/issues/999

Co-authored-by: Bairen Yi yibairen.byron@bytedance.com
Co-authored-by: Jiawei Wu xremold@gmail.com
Co-authored-by: Tianyou Guo tianyou.gty@alibaba-inc.com
Co-authored-by: Xu Yan yancey.yx@alibaba-inc.com
Co-authored-by: Ziheng Jiang ziheng.jiang@bytedance.com
2022-07-25 23:47:46 +08:00
Tanyo Kwok f50d7013cd
[MHLO] Add [un]squeeze op patterns (#1099)
* [MHLO] Add [un]squeeze op patterns

* Conform to llvm coding standard

* minor update
2022-07-25 23:28:48 +08:00
Tanyo Kwok b80ce79b9f
[MHLO] Init MHLO view like op patterns (#1090)
* [MHLO] Init MHLO view like op patterns

See RFC: https://github.com/llvm/torch-mlir/issues/999

Co-authored-by: Bairen Yi yibairen.byron@bytedance.com
Co-authored-by: Jiawei Wu xremold@gmail.com
Co-authored-by: Tianyou Guo tianyou.gty@alibaba-inc.com
Co-authored-by: Xu Yan yancey.yx@alibaba-inc.com
Co-authored-by: Ziheng Jiang ziheng.jiang@bytedance.com

* update filecheck test cases

* rebase, remove chlo and clang-format
2022-07-22 15:18:18 +08:00
Tanyo Kwok a02dbb2d5e
[MHLO] Init MHLO slice like op patterns (#1091)
See RFC: https://github.com/llvm/torch-mlir/issues/999

Co-authored-by: Bairen Yi yibairen.byron@bytedance.com
Co-authored-by: Jiawei Wu xremold@gmail.com
Co-authored-by: Tianyou Guo tianyou.gty@alibaba-inc.com
Co-authored-by: Xu Yan yancey.yx@alibaba-inc.com
Co-authored-by: Ziheng Jiang ziheng.jiang@bytedance.com
2022-07-22 11:32:45 +08:00
Ramiro Leal-Cavazos f271e6a88c
Add verifiers for ToBuiltinTensorOp and FromBuiltinTensorOp (#1089)
This commit adds verifiers to the ops `ToBuiltinTensorOp` and
`FromBuiltinTensorOp` that make sure that the input and output have
the same shape and data type.
2022-07-21 21:41:45 +00:00
powderluv 31fd812acf
Add linux and macOS source builds in CI (#1070)
This enables building Pytorch from source in the CI.
The build should mostly hit the ccache.
Release builds will follow once we have some runtime on the CI.
2022-07-21 14:16:03 -07:00
Ashay Rane 72dd04cdb3
Revert "python: trim registration and loading of dialects and passes" (#1093)
This reverts commit ad283c1043, since it's
causing nightly build failures for all platforms.
2022-07-21 09:35:42 -07:00
Ashay Rane ad283c1043
python: trim registration and loading of dialects and passes (#1084)
In the interest of merging upstream LLVM quickly, a previous patch
(7f08169) updated the torch-mlir build to register all dialects and
passes through Python bindings.  This patch limits the dialects and
passes to only those that are used in torch-mlir.

Key to this change are the removal of
`MLIRPythonExtension.RegisterEverything` and the introduction of a new
Python module (`_mlir_libs/_site_initialize_0.py`), where we register
the dialects and passes used by torch-mlir.
2022-07-20 18:34:17 -07:00
Ziheng Jiang c61c99e887
[MHLO] Init MHLO integration. (#1083)
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-07-20 16:18:16 -07:00
Vivek Khandelwal 4c25878e64 [MLIR][TORCH] Add canonicalization pattern for prim.ListUnpack op
This commit adds the canonicalization pattern for the `prim.ListUnpack` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-18 13:51:25 +05:30
Vivek Khandelwal 3589134d31 [MLIR][TORCH] Add decomposition for aten.var.dim op
This commit adds the decomposition for `aten.var.dim` op.
This commit also make changes in the decomposition for `aten.var` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-15 09:53:42 +05:30
Ashay Rane 29bc48aedb
torch: add pass to catch non-value tensors (#1052)
This patch adds a new pass `torch-verify-conversion-to-value-semantics`,
which looks for non-value semantics tensors to catch such tensors early
during compilation.

This pass requires `torch-refine-public-return` pass to ensure that
return operations are updated to use value tensors, followed by the
canonicalize pass to remove any dead ops that may use or produce
non-value tensors.
2022-07-13 17:11:15 -07:00
Ashay Rane 64c04bd5f6
canonicalizer: [nfc] update LIT variable names for consistency (#1051)
A previous patch used lowercase names for LIT variables.  This patch
replaces them with uppercase names to maintain consistency with other
variables.
2022-07-13 12:28:25 -07:00
Ashay Rane ac4d7d10e0
canonicalizer: propagate type information across copy and cast ops (#1030)
Prior to this patch, the canonicalizers for `AtenSizeOp` and
`AtenSizeIntOp` succeeded only if the tensor operand's type information
included the size of the requested dimension(s).  We can extend the set
of optimizable cases by propagating types across operations whose result
type matches the input tensor type.

Specifically, this patch enables the canonicalizers for `AtenSizeOp` and
`AtenSizeIntOp` to see past `tensor_static_info_cast`,
`copy.to_vtensor`, and `copy.to_tensor` ops until it reaches the first
op whose result type contains size information for the requested
dimensions, with a maximum bound of 6 parent lookups to avoid indefinite
compilation times.  All other encountered ops cause the canonicalizer to
give up.
2022-07-12 12:38:37 -07:00
Sean Silva e5e11e214b GlobalizeObjectGraph: Clean up handling of unused slots
The way we did it previously still created the slot and copied the
initializer even if unused.
2022-07-12 10:47:28 -07:00
Ashay Rane 9017be9e9e
torch: copy uses to prevent iterator invalidation (#1033)
Prior to this patch, the code in the `torch-simplify-shape-calculations`
pass iterated on the uses of an op's result while also modifying the
value.  This caused the iterator to get invalidated, thus terminating
the loop early and producing incorrect IR.  This patch makes use of
`llvm::make_early_inc_range()` to ensure that the iterator is not
invalidated while executing the loop body.
2022-07-11 18:47:04 -07:00
Ramiro Leal-Cavazos 11148e60d6
Undo shape lib changes + update function signature of sum + zero (#1035)
This commit does three things:
  1. Reverts some of the shape lib changes merged in
  https://github.com/llvm/torch-mlir/pull/844
  2. Updates the signature of `aten.sum_dim_IntList` that was recently
  updated in
  23bdb570cf
  3. Replaces `aten.zero.functional` with `aten.zero`, updated in 960758b0b7
2022-07-11 10:56:12 -07:00
Prateek Gupta 2d75654b2c [TORCH][MLIR] Add lowering of `aten.slice_scatter` and
`aten.select_scatter` op.

This commit adds:
1.  Lowering of `aten.slice_scatter` op into `tensor.insert_slice`
op.
2. Decomposes the `aten.select_scatter` op into `aten.slice_scater`
op.

Signed-Off-By: Prateek Gupta <gprateek93@gmail.com>
2022-07-11 14:07:21 +05:30
Ashay Rane 340d8af28a
torch: handle `torch.prim.dtype` ops during type refinement (#1013)
The canonicalizer converts `torch.prim.dtype` ops into integer constants
for valid types, but the type may not be known until type refinement is
complete.  However, type refinement cannot make progress until
`torch.prim.dtype` ops have been resolved to their corresponding integer
constants, thus creating a circular dependency.

This patch creates a tight coupling between type refinement and the
lowering of `torch.prim.dtype` ops by handling such ops as they are
encountered during type refinement.  The unit test in this patch aims to
check whether the type refinement pass can now handle chains of
operations that alternate between type construction and type refinement.
2022-07-08 16:38:51 -07:00
Ramiro Leal-Cavazos 6a72ab4502
Add basic support for list of optional tensors in reduce-op-variants (#971)
This commit adds support for lists of type `list<optional<tensor>>`
where each element in the list is either a `!torch.tensor` or a
`!torch.none`.
2022-07-08 11:12:15 -07:00
Quinn Dawkins f0c3b5a7ed
Add E2E support for aten.len.str (#969) 2022-07-07 10:41:55 -07:00
Ashay Rane 88316b3b4e
torch: fold prim.dtype(bf16) to integer constant 15 (#1012)
A prior patch (63538de2) that added support for bfloat16 type did not
add the canonicalization pattern to fold `torch.prim.dtype` operations
on bfloat16 tensors into the integer constant 15.  This patch fixes the
problem.
2022-07-06 18:21:43 -07:00