Commit Graph

2915 Commits (11c3281a8ae264f8073096b3ccdfe6c7657ee35d)
 

Author SHA1 Message Date
Xinyu Yang ae4724763a
[Stablehlo] Enhance broadcast pattern in matmul Ops (#3161)
To pass test "MatmulStaticBroadcast_basic" in stablehlo:
```python
class MatmulStaticBroadcast(torch.nn.Module):
    def __init__(self):
        super().__init__()

    @export
    @annotate_args([
        None,
        ([4, 1, 6, 7], torch.float32, True),
        ([8, 1, 5, 7, 6], torch.float32, True),
    ])
    def forward(self, lhs, rhs):
        return torch.matmul(lhs, rhs)


@register_test_case(module_factory=lambda: MatmulStaticBroadcast())
def MatmulStaticBroadcast_basic(module, tu: TestUtils):
    module.forward(tu.rand(4, 1, 6, 7), tu.rand(8, 1, 5, 7, 6))
```
2024-04-16 10:10:36 +08:00
zjgarvey 5e564b5864
Adds Some Quantization Support for AtenMatmulOp (#3147)
1. onnx.MatMulInteger now converts to aten.matmul instead of aten.mm
2. aten.matmul, for ranks >=2, now allows quantized inputs and will
lower to linalg::quantized_matmul or linalg::quantized_batch_matmul.
3. added AtenMatmulOp to the FuseQuantizeOps rewrite patters
QuantizeOperands, QuantizeTransposedOperands, and QuantizeAccumulator
4. added several tests, including some to test AtenMmOp with varying
quantization signed-ness.
5. a quantized matmul mat-vec test is added to verify the failure to
lower to linalg; cleaned of out-of-date code related to common
torch-mlir lowering xfails.
6. in debugging a real model with quantized matmuls, I found a bug on
the scalarize-shapes pass which resulted from the aten.full op folder
returning an incompatible result type. This is fixed by the small change
here to
[lib/Dialect/Torch/IR/TorchOps.cpp](https://github.com/llvm/torch-mlir/compare/main...zjgarvey:torch-mlir:MatMulIntegerFix?expand=1#diff-dc8ed165c207918e606490eee3984b1ad51d7034e6aac36fc046bf47f6f03f4f).
2024-04-15 16:06:47 -07:00
IanWood1 5708ee7ec9
Added 2 Ops: Floor divide scalar and Floor divide scalar mode (#3156)
- Added linalg lowering for `AtenFloorDivideScalarOp`
  - Needed `AtenDivScalarModeOp` for the decomp.
- Added linalg lowering for `AtenDivScalarModeOp`
- Moved linalg payload logic to `createDivModePayload()` since the logic
was nearly identical for both `AtenDivScalarModeOp` and
`AtenDivTensorModeOp`. Just a template function
 -  Added `AtenDivScalarModeOp` lowering for stablehlo
 

Pytorch's
[`torch.floor_divide()`](https://pytorch.org/docs/stable/generated/torch.floor_divide.html)
in a previous version (for a reason unknown to me) preformed a
truncation instead of "floor". The already implemented op
`AtenFloorDivideTensorOp` was done before this change. However, this
wasn't caught because our testcases only tested positive floor division.
I changed this to floor as well as adding a few test cases.
2024-04-15 13:45:10 -07:00
jinchen 83cba8c696
[onnx] Support for `onnx.EyeLike` via torch lowering (#2994) 2024-04-15 09:23:26 -07:00
penguin_wwy 9ac90ec7b2
Refactor the parameters and usage instructions of the setup script. (#3162)
As this
issuecomment(https://github.com/llvm/torch-mlir/pull/3021#issuecomment-2031248199)
suggests, `setup.py` should only be used for building Python packages,
so:
* disabled the develop command
* refactor the environment variable parameters
* add more doc for the usage and env var of setup.py
2024-04-14 10:40:25 -07:00
penguin_wwy 45eaeaaf36
[FxImporter] Add FxImporter config in e2e-test (#3151) 2024-04-12 16:07:56 -07:00
jinchen 859f5d280f
Generalize getting index for onnx compress op (#3150) 2024-04-12 15:18:22 -07:00
Xida Ren (Cedar) ed163f49e8
Delete .github/workflows/buildAndTest.yml to solve CI error messages … (#3155)
…on every push

fixes #3144
2024-04-12 12:11:48 -07:00
zjgarvey 197ef4224b
Avoid Type Mismatch in Slice Folder (#3154)
Fixes issue #3153
2024-04-12 11:43:45 -07:00
Aart Bik 307f49f566
[torch-mlir][sparse] support sparse tensor output (#3152)
Sparse inputs and outputs are now fully supported! They always consist
of their constituents buffers, passed as numpy arrays. Sparse on!
2024-04-12 09:56:32 -07:00
Aart Bik a7302a68a7
[torch-mlir] Bump LLVM to llvm/llvm-project@a952c12 (#3149) 2024-04-11 23:15:08 -07:00
Xinan Jiang(姜曦楠) 71d90788d3
[MLIR][TORCH] Support parallel dimemsions expand/collapse (#3051)
This PR support `aten.view` with unique unknown dimension both in input
shape and output shape while the pass convert-torch-to-linalg that
lowing `aten.view` to `tensor.collapse_shape` or `tensor.expand_shape`.

Below is an example
```
func.func @test_reshape(%arg0: !torch.vtensor<[1,?,50,16],f32>) -> !torch.vtensor<[1,?,16],f32> attributes {torch.assume_strict_symbolic_shapes, torch.onnx_meta.ir_version = 9 : si64, torch.onnx_meta.opset_version = 19 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
  %int1 = torch.constant.int 1
  %int-1 = torch.constant.int -1
  %int16 = torch.constant.int 16
  %0 = torch.prim.ListConstruct %int1, %int-1, %int16 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
  %1 = torch.aten.view %arg0, %0 : !torch.vtensor<[1,?,50,16],f32>, !torch.list<int> -> !torch.vtensor<[1,?,16],f32>
  return %1 : !torch.vtensor<[1,?,16],f32>
}
```
2024-04-11 10:43:03 -07:00
Rob Suderman a1fe307a76
[torch] Support implicit batch for index_put (#3128)
If there is only a single value scattered there can be an implicit batch
dimension. This includes a check for the implicit batch dimension when
reshaping the update tensor. It includes an e2e test to verify
correctness.
2024-04-11 10:18:03 -07:00
penguin_wwy d4a30b7e67
Fix deprecated uses of cast/dyn_cast/dyn_cast_or_null/isa (#3130)
We should prefer functional style as the method style is deprecated
https://github.com/llvm/mlir-www/blob/main/website/content/deprecation/_index.md#deprecated
(https://mlir.llvm.org/deprecation/)
2024-04-11 06:47:35 -07:00
Xinyu Yang 308c45e61a
[Torch] Fix PrimListUnpackOp::getCanonicalizationPatterns (#3140)
Fix the case PrimListUnpackOp's result num is not equal to PrimList
length.
See the following example:
```python
    def forward(self, x):
        if len(x.shape) == 5:
            b0, t, c0, h0, w0 = x.shape
            b, c, h, w = torch.mul(b0, t), c0, h0, w0
        else:
            b1, c1, h1, w1 = x.shape
            b, c, h, w = b1, c1, h1, w1
        res = torch.reshape(x, [b, c, h, w])
        return res
```
Without this fix, the following error message will occur:
```
/root/torch-mlir/externals/llvm-project/mlir/lib/IR/PatternMatch.cpp:118: virtual void mlir::RewriterBase::replaceOp(mlir::Operation *, mlir::ValueRange): Assertion `op->getNumResults() == newValues.size() && "incorrect # of replacement values"' failed.
```
2024-04-11 19:48:49 +08:00
Xinyu Yang 6524838bcb
[Torch] Add general AdaptiveAvgPool2dOp decompose support (#3111)
Previously, it could only handle the situations where outputsize == (1,
1) or outputsize == (input_H, input_W). Now it supports all situations
where input_H % output_H== 0 && input_W % output_W == 0
2024-04-11 17:02:59 +08:00
Yuanqiang Liu 88533b1968
[Stablehlo] fix aten.arange's lowering to stablehlo (#3138)
* promote to f64 to do division, avoid division on i64 (floor div)
* refactor torch-to-stablehlo-pipeline
2024-04-11 15:55:56 +08:00
zjgarvey aa5e150313
Adds Some uint8 Quantization Fixes (#3122)
1. Changes the linalg lowering for dequantization ops to always sign
cast to float to prevent misrepresenting uint32 overflow on subtraction
with zero point.
2. Adds a basic quantized model test which only quantizes and
dequantizes and now passes with these changes in linalg and onnx
configs.
3. Changes the aten.mm lowering to allow mismatched quantized types. 
4. If a quantized matmul arg is uint8, we shift by 128 to faithfully
represent the quantization as a signed i8 quantization. This worked fine
in the AtenMmOp lowering, but I'd be happy to move it to a rewrite in
FuseQuantizedOps.cpp instead if that seems more appropriate.

With the changes 3 and 4, the QuantizedMLP_basic and
QuantizedSingleLayer_basic e2e tests now passes with the onnx config.
2024-04-10 12:36:58 -07:00
Vivek Khandelwal 3b84a7162b
build: manually update PyTorch version (#3116)
Set PyTorch and TorchVision version to nightly release 2024-04-08.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-10 21:16:34 +05:30
Xinyu Yang 5eb0cf9104
[Torch] Add decompose of AtenToPrimDeviceOp (#3131)
As device information isn't relevant to torch-mlir
2024-04-10 22:26:48 +08:00
Jae Hoon (Antonio) Kim 8951a8cc23
Replace c10::optional with std::optional (#3126)
They replaced all `c10::optional` usages with `std::optional` in
torchgen'd code in
fb90b4d4b2
causing the LTC build to break.

Replacing all usages of `c10::optional` with `std::optional` in
`projects/ltc` has fixed the issue

Issue: #3120
2024-04-09 18:38:33 +00:00
Aart Bik 184d8c13f4
[torch-mlir][sparse] add ID-net example (#3127)
first sparse-in/sparse-out example, will be used
to make actual sparse output work!
2024-04-09 11:21:30 -07:00
IanWood1 8ff28527cb
Add more descriptive error message to torch_ods_gen.py. (#3108)
Added error message when adding new torch op to
[torch_ods_gen.py](https://github.com/llvm/torch-mlir/compare/main...IanWood1:torch-mlir:ods_gen_error_message?expand=1#diff-889b60b904ed67a5065a14e8de6fc89e00e199577e4d2bfa134ac4d1c89832d2).


New message displays which op key is failing and possible matches in the
torch `Registry`.
```Op does not match any Torch ops in Registry 
Given op: 
    "aten::hardtanh_wrong : (Tensor, Scalar) -> (Tensor)" 
Possible matches: 
    "aten::hardshrink : (Tensor, Scalar) -> (Tensor)" 
    "aten::hardtanh_ : (Tensor, Scalar, Scalar) -> (Tensor)" 
    "aten::hardtanh : (Tensor, Scalar, Scalar) -> (Tensor)"
    "aten::clamp_min : (Tensor, Scalar) -> (Tensor)" 
    "aten::linalg_cond : (Tensor, Scalar?) -> (Tensor)"```



Also, ran black formatting on file. Based on LLVM style guides this seems to be correct, but I can revert the formatting if needed.
2024-04-09 09:50:34 -07:00
Yuanqiang Liu 8d5e2578b0
[Stablehlo] lowering aten.view to shape.num_elements + stablehlo.comp… (#3125)
…ute_reshape_shape

as that `aten.view` support at most one `-1` in dim list. The original
calculation of `numel` is wrong when there is a `-1` in dim list.
2024-04-09 14:54:57 +08:00
Xinyu Yang 42a16fa912
[Torch] Support Aten_CastFloatOp. (#3115)
By canonicalize Aten_CastFloatOp into AtenToDtypeOp
2024-04-09 11:06:53 +08:00
Sambhav Jain 04aeb4913f
Disable LTC from release builds to bypass linker issue (#3121)
Workaround for https://github.com/llvm/torch-mlir/issues/3120. This
should bring prebuilt releases back to green:
https://github.com/llvm/torch-mlir-release/actions.
2024-04-08 18:23:46 -07:00
Aart Bik 5797d3aa57
[torch-mlir][sparse] add a COO test for 3-dim (#3119)
This tests COO for more than 2-dim. Note that sparsity should really
propagate into the relu activation and the output, but such cleverness
needs to wait for the pending work in the PyTorch tree.
2024-04-08 16:46:51 -07:00
Xida Ren (Cedar) dd967eb199
[ONNX] Support onnx.LSTM (#2969)
This PR only performs a lit test. In lieu of an e2e test, https://github.com/nod-ai/SHARK-TestSuite/pull/142 makede sure that the lowering works & the numbers check out.

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-04-08 12:23:33 -07:00
Vivek Khandelwal 1d6e4c3d77
[MLIR][TORCH] Add OnnxToTorch lowering for Einsum op (#3117)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-08 22:38:01 +05:30
Xinyu Yang 84c24e5771
[Torch] Support Aten__And__ScalarOp (#3114) 2024-04-08 20:24:17 +08:00
Yuanqiang Liu 2c56ef9252
[Torch Dialect] canonicalize aten.sign to aten.sgn (#3112)
* `aten.sign` is a sub-set of `aten.sgn` (`aten.sgn` support complex
type).
2024-04-08 20:05:42 +08:00
Yuanqiang Liu 43d54efd14
[cmake] link TorchMLIRTorchConversionPasses to TorchMLIRConversionPasses (#3113)
* as that `TorchMLIRTorchConversionPasses` missing dependencies of
`TorchMLIRTorchToStablehlo` and `TorchMLIRTorchToTensor`.
* use `TorchMLIRConversionPasses` instead of scattered targets.
2024-04-08 14:44:34 +08:00
Yuanqiang Liu 498ab997cd
[Stablehlo] lowering aten.log1p to stablehlo.log_plus_one (#3110) 2024-04-07 17:01:58 +08:00
Yuanqiang Liu 0a00f38a7e
[Stablehlo] add stablehlo-aggressive-simplification in e2e test (#3109)
* so that more stablehlo e2e testcases would pass.
2024-04-07 10:48:11 +08:00
Rob Suderman 9d9a05366e
[torch] Fix aten.squeeze lowering to use result shape (#3106)
Squeezes can be ambiguous without the output shape information. For
instance (1, 1, 256) squeezed can be either (1, 256) or (256). We need
to check the resulting shape to know what the shape should look like.
2024-04-04 09:43:12 -07:00
Vivek Khandelwal af54d27820
[MLIR][TORCH] Fix Onnx.TopK lowering (#3103)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 22:12:48 +05:30
Vivek Khandelwal 7e778e2179
build: manually update PyTorch version (#3094)
Set PyTorch and TorchVision version to nightly release 2024-04-01.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 10:48:37 +05:30
Vivek Khandelwal ce7d4f1660
[MLIR][TORCH] Fix Onnx.ReduceSum lowering for failing e2e tests (#3095)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-03 09:57:19 +05:30
Rob Suderman f97cd4893f
[torch] Improve shape inference for dynamic shapes (#3091)
Shapes can be processed as tensors to represent the set of dimensions.
As reshapes take a list of scalars this can result in a single dynamic
dimension blocking the adjacent static dimensions.

This pass attempts to de-couple tensor computations related to shapes
and propagate values to better support lowering scalar tensor
computations.
2024-04-02 16:19:57 -07:00
Sambhav Jain 401869e31d
[Bazel] Use bazel 6 to support dict select union (#3100)
Bazel builds broke with the recent LLVM bump due to union select of
dictionaries:
```bazel
    substitutions = {
        "#cmakedefine01 MLIR_DEPRECATED_GPU_SERIALIZATION_ENABLE": "#define MLIR_DEPRECATED_GPU_SERIALIZATION_ENABLE 0",
        "#cmakedefine01 MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS": "#define MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS 0",
        "#cmakedefine MLIR_GREEDY_REWRITE_RANDOMIZER_SEED ${MLIR_GREEDY_REWRITE_RANDOMIZER_SEED}": "/* #undef MLIR_GREEDY_REWRITE_RANDOMIZER_SEED */",
        "#cmakedefine01 MLIR_ENABLE_NVPTXCOMPILER": "#define MLIR_ENABLE_NVPTXCOMPILER 0",
        "#cmakedefine01 MLIR_ENABLE_PDL_IN_PATTERNMATCH": "#define MLIR_ENABLE_PDL_IN_PATTERNMATCH 1",
        "#cmakedefine01 MLIR_ENABLE_ROCM_CONVERSIONS": "#define MLIR_ENABLE_ROCM_CONVERSIONS 0",
    } | if_cuda_available(
        {"#cmakedefine01 MLIR_ENABLE_CUDA_CONVERSIONS": "#define MLIR_ENABLE_CUDA_CONVERSIONS 1"},
        {"#cmakedefine01 MLIR_ENABLE_CUDA_CONVERSIONS": "#define MLIR_ENABLE_CUDA_CONVERSIONS 0"},
    ),
```
```
Analyzing: target @torch-mlir//:torch-mlir-opt (1 packages loaded, 0 targets configured)
ERROR: Traceback (most recent call last):
	File "/root/.cache/bazel/_bazel_root/b89349c08f7224396763d[14](https://github.com/llvm/torch-mlir/actions/runs/8515127977/job/23322023669#step:8:15)fe35cba11/external/llvm-project/mlir/BUILD.bazel", line 41, column 7, in <toplevel>
		} | if_cuda_available(
Error: unsupported binary operation: dict | select
```

Bazel 6 supports dict select union
ebae4860db
after starlark added support for union over dictionaries. This PR bumps
bazel to 6.4, and adds a missing dep.

torch-mlir's bazel build:
https://github.com/sjain-stanford/torch-mlir/actions/runs/8530438588/job/23368225180
2024-04-02 15:51:01 -07:00
Stella Laurenzo ffaaf08c31
[fx] Fix type inference for scalar/int types. (#3099)
This was discovered in a downstream test suite and was due to a control
flow nesting merge issue. In-tree test added and fixed.
2024-04-02 13:56:43 -07:00
zjgarvey 40e762ca42
Adds result types to a prelu decomp (#3098)
This adds explicit result types instead of relying on shape/dtype
computations.

Solves a regression issue with IREE: #3092
2024-04-02 11:41:56 -07:00
Yuanqiang Liu 6cbb2f7ae0
[Stablehlo] add stablehlo-canonicalize-dynamism when lowering (#3097)
so that many stablehlo e2e testcases could pass
2024-04-02 22:47:24 +08:00
Vivek Khandelwal d1f770c620
[MLIR][TORCH] Fix OnnxToLinalg lowering issue for ReduceMean op (#3008)
This commit also cleans up the OnnxToTorch lowering for the ReduceMean
op and adds the support for handling edge cases.

Signed-Off By: Vivek Khandelwal vivekkhandelwal1424@gmail.com
2024-04-02 16:54:04 +05:30
Xinyu Yang ac1cd3d78a
[Torch] Support AtenDivTensorModeOp with static int input for linalg and stablehlo backend (#3088) 2024-04-02 17:28:53 +08:00
Thomas Dietert d2432bbe5a
[MLIR][Torch] Do not convert bias tensor to element type if NoneType (#3072)
The `convertTensorToElementType` function expects it's argument to have
a valid tensor type that is not `Torch::NoneType`. This PR checks that
the bias tensor is not of type `Torch::NoneType` before calling
`convertTensorToElementType` on the bias tensor argument in the
`matchAndRewrite` member function of the `ConvertAtenConvolutionOp`
class.
2024-04-02 14:19:26 +05:30
ptrifunovic98 1c8c47d483
Add complex support for aten.norm and similar operations (#3052)
Add support for complex-type input tensors for norm, vector norm, and
Frobenius norm operations.
2024-04-02 14:03:30 +05:30
Rob Suderman 0f5d5e9f4e
[stablehlo] Fix test stablehlo e2e test suite (#3093)
There is an issue with stablehlo's linalg compilation. Canonicalization
appears to cleanup the issues until we can determine what in
mlir/stablehlo is the source of the issue.
2024-04-02 12:40:00 +08:00
penguin_wwy 5325d3e6e6
[fx] Fix type hint for fx importer (#3066)
Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
2024-04-01 17:31:43 -07:00
Rob Suderman ec4cb8be44
Bump LLVM to llvm/llvm-project@0030fc4ac7 (#3079)
Co-authored-by: Peiming Liu <peiming@google.com>
2024-04-01 16:34:59 -07:00