This pass verifies that a given module satisfies the contract that we
have for backends. This is phrased as an "allowlist", because we want to
keep this interface tight. Also, this gives much better diagnostics than
a backend randomly crashing or failing to compile would (though they
could still be improved).
This was especially painful because if we had
`tensor<?x!numpy.any_dtype>` slip through, at some point RefBackend
would convert it to a memref type and trip the "verify type invariants"
assertion which gives no location or anything and crashed the process,
which was very unpleasant.
We implement this with the dialect conversion framework, which works
reasonably well and was quick to put together and familiar, but is still
very "op oriented". We probably want to make this hand-rolled
eventually, especially the error reporting (the most useful kind of
error for a dialect conversion user is not necessarily the best for this
use case). Also, in production, these error will go to users, and need
to be surfaced carefully such as "the compiler needs a type annotation
on this function parameter" which in general requires some special
analysis, wordsmithing, and overall awareness of the e2e use case (such
as how much we can lean into certain source locations) to provide a
meaningful user-level diagnostic.
Also, add `inline` to the current frontend lowering pass pipeline to
allow slightly more complicated programs that otherwise would fail on
shape inference.
Recommended review order:
- Changes in frontends/pytorch/examples/
- Changes in python/npcomp/compiler/pytorch/backend/
- Boilerplate for the `npcomp-iree-backend-lower-linkage` pass.
This change separates out a
`npcomp.compiler.pytorch.backend.frontend_lowering` module that does the
common lowering for all backends. The individual compiler backends
`npcomp.compiler.pytorch.backend.{refjit,iree}` now accept a loosely
defined "TCP + scalar code" IR mix that will be formalized in the
future as the interface to codegen backends.
This also required adding a small pass
`npcomp-iree-backend-lower-linkage` which adds `iree.module.export` onto
functions, and layering that into the frontend flow. The pass doesn't
require a C++-level dependency on IREE, which is nice for now. TBD how
we are going to handle lists (we hope we can get away with sneakerneting
some td files and relying on loose IR compatibility).
Running through IREE requires the ability to import `iree.compiler` and
`iree.runtime`, which can be obtained as follows:
```
python3 -m pip install iree-compiler-snapshot iree-runtime-snapshot -f https://github.com/google/iree/releases/tag/snapshot-20210406.200
PYTHONPATH="${PYTHONPATH}:${MY_IREE_BUILD}/bindings/python/"
```
This patch makes it painfully clear that we don't have any e2e testing
harness to really plug into, and also don't have a usable Python API to
our compiler stack (something usable in a jupyter notebook).
That will be addressed in subsequent commits. We've been flying by the
seat of our pants with this `examples` directory that isn't subject to
any kind of testing or real usability concerns.
* Most updates are mechanical except:
* python/npcomp/__init__.py and python/NpcompModule.cpp: New init/registration bits to replace some automatic things being done in the old bindings. Also an annoying linkage hack that I'll need to triage next.
* NpcompModule.cpp: New python helpers for custom types and other hard to reach items (for the new bindings).
* PybindUtils.h: Extended type casting so that the local extension can directly exchange Mlir* C types.
* python/npcomp/dialects/*: Build support and ODS bindings for local dialects.
* mlir_utils.py: Defines an ImportContext to replace the old/bad "Helper" class that tracked locations, and insertion points. This has a number of methods on it that would be good candidates to think about better ways to do them upstream.
* Also hoisted a few stand-alone samples to dedicated unit tests as they covered important things.
* More cleanup can be done, but keeping this patch as mechanical as possible to stay in NFC land (this is big enough).
* IREE doesn't have proper install support, so there is some temporary hoaky hacking in our CMakeLists.txt to shuttle some symlinks around.
* Reworked the original numpy e2e with IREE test to pipe through iree-translate.
* Removed all of the C++-level dependencies.
* Will generalize and apply to the PyTorch backend in a followup.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.
Sizes with dynamic linking (stripped, release, asserts enabled):
libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
libMLIR.so: 31M
_npcomp.so: 1.6M (python extension)
_torch_mlir.so: 670K (python extension)
npcomp-capi-ir-test: 6.3K
npcomp-opt: 351K
npcomp-run-mlir: 461K
mnist-playground: 530K
Still more can be done to normalize and optimize but this gets us structurally to the starting point.
I now realize that VerboseCamelCase is not the best choice for dialect
directory/file names and C++ identifiers (take e.g. "Linalg", "Basicpy",
etc. as prior art here; not LinearAlgebra or BasicPython). If I had to
name the convention it seems to be "Shortword" (or of course just
acronym dialects like LLVM, SCF, etc.).
This rename also has the side benefit of differentiating RefBackend
directories, which now refer to the actual backend itself, from
Refback/Refbackrt, which are the dialects which happen to be used by
that backend.
Other than the dialect definitions (which will live in standard Dialect/
subdirectory), the goal here is to keep RefBackend-related code nested
in {include/npcomp,lib,test}/RefBackend.
This is the first in a patch series that is refactoring the
constellation of things variously called or associated with "E2E",
"RefE2E", "npcomprt", and "TCP" into a more cleanly layered result.
Concretely, this first patch fixes the fact that TCP was basically
acting like a dumping ground needed by the reference backend. This
splits it out, which is fairly mechanical, but touches a lot of lines of
code (basically replacing `tcp` with `refback` and `TCP` with
`RefBackend).
Now, the RefBackend dialect is that dumping ground, which
is slighly better, as it starts allowing TCP to become a nice clean
middle layer that is not related per se to the reference backend.
The previous name RefE2E or "reference e2e flow" was super confusing.
Now that we are seeing more clearly where the "backend" distinction
lies, the [RefBackend] commit tag is born :)
* Uses the MLIR-C API since that will save us a lot of grief down the road (i.e. will give PyTorch and libMLIR/libNPCOMP the ability to skew version-wise).
* Quite a few TODOs and not yet populating the function in any way.
* llvm-project: b5924a8e27536d19dd5c4d302db29fb6163d5faa
* mhlo: 848ca244d20f045b7921da55a98a04d95ef94f0e
* Multiple breakages that need to be fixed.
Fixes:
* Refactor dialect registration
* Remove all kindof methods (Casting functionality has been added upstream and is implicitly
available, see https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types/1547.)
* Update dialect registration to comply with https://reviews.llvm.org/D85495.
* Remove type kinds and update some changed dialect signatures.
* Upgrade ATen dialect to match upstream needs.
* Move dialect registration to tablegen.
* Register the ListType in tablegen.
* Change dialect initialization signature.
* Use TypeSwitch in MlirIr location printer.
* Remove global registry depends from npcomp-opt.
* Change LowerToLLVM to pass an MLIRContext vs an LLVMDialect for type creation.
* Remove dep on MLIREDSCInterface that is removed upstream.
* Thread through the DialectRegistry for opt and python-like tools.
* Modernize pass registration (This was forced because the GEN_PASS_REGISTRATION code now generates inline functions vs literal pass registration statements)
Co-authored-by: Marius Brehler <marius.brehler@iml.fraunhofer.de>
This patch adds a dialect intended to be used as a frontend dialect
to facilitate lowering from "A Tensor Library" in torch/pytorch.
This patch includes several passes that are useful in conjuction with the
dialect:
--aten-layer-name: Generates layer names for each operation, which are not
present in the original pytorch.
--aten-to-std: Lower the ATen dialect into standard dialect function calls.
--return-elimination-pass: convert functions (primarily the toplevel function)
to pass return values by reference. This simplifies pytorch integration.
--aten-op-report: generate a textual report about the model
--liveness-report
Future patches will implement actual integration with the pytorch jit to
intercept and generates MLIR in this dialect, then lower the resulting MLIR
into function calls through aten-layer-name -> aten-to-std ->
return-elimination -> std-to-llvm. The result would then jitted using the LLVM
jit, linked against a runtime library which makes calls back into pytorch to
implement all the layers.
Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>
Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>
Mostly this is CMake cleanup. Several library dependencies are missing, which
is often revealed with shared library builds. Also, it's generally bad to
link directly against LLVM libraries because it fails when using
LLVM_LINK_LLVM_DYLIB. MLIR will pull in libLLVM.so, and there will be
duplicate linkage with the the explicit libraries. There may need to be more
refactoring here.
* Rewrites public function signatures to operate on tensors (vs ndarray).
* Most of our backends presume immutable tensors at public function boundaries.
This ~totally reworks the existing "runtime" stuff to be more
principled and usable, such as from Python. It's still not fully
production-quality, mainly in the department of memory management (e.g.
it currently leaks memory; we need to figure out "who frees memrefs" +
the analysis and transformation needed to do that (maybe use upstream
buffer allocation pass?)).
The user API is in include/npcomp/runtime/UserAPI.h, though
include/npcomp/JITRuntime/JITModule.h is a friendlier wrapper.
The stuff under {include,lib}/runtime is totally firewalled from the
compiler and tiny (<6kB, though no attention has gone into optimizing
that size). For example, we don't link in libSupport into the runtime,
instead having our own bare bones replacements for basics like ArrayRef
(the JITRuntime helps with bridging that gap, since it *can* depend on
all common LLVM utilities).
The overall features of npcomprt is that it exposes a module that
with multiple function entry points. Each function has arguments and
results that are tensor-valued, and npcomprt::Tensor is the runtime type
that is used to interact with that (and a npcomprt::Ref<T>
reference-counting wrapper is provided to wrap npcomprt::Tensor in the
common case).
From an implementation perspective, an npcomprt module at the
LLVM/object/binary level exposes a single module descriptor struct that
has pointers to other metadata (currently just a list of function
metadata descriptors). All interactions with the npcomp runtime are
keyed off of that module descriptor, including function lookups and
dispatching. This is done to dodge platform ABI issues and also allow
enough reflection to e.g. verify provided arguments.
Most of the compiler-side work here was in LowerToNpcomprtABI and
LowerToLLVM.
Also,
- Rename npcomp_rt/NpcompRt to npcomprt/Npcomprt; it was getting
annoying to type the underscores/caps.
- misc improvements to bash_helpers.sh