This tests COO for more than 2-dim. Note that sparsity should really
propagate into the relu activation and the output, but such cleverness
needs to wait for the pending work in the PyTorch tree.
Set PyTorch and TorchVision version to nightly release 2024-03-07.
This commit also removes the deprecated constraints API:
342e7929b8
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Also note that we are in the process of proposing SparseTensorMetadata
to PyTorch FX graph export (see
https://github.com/pytorch/pytorch/pull/117907). This will hopefully
eventually replace the current data structures in torch-mlir.
As of https://github.com/pytorch/pytorch/pull/118969, `ExportedProgram`
has the long awaited fixes to correctly categorize various things
relating to parameters, buffers, mutated inputs and constants.
With this additional modeling, we are finally able to implement
(safely/soundly) the mutable semantics that were attempted on the
TorchScript path. The difference is that on that path, we had to
conservatively treat everything as mutable and run some dodgy heuristics
(which have been the cause of many bugs relating to
"MaximizeValueSemantics") to try to get back to an immutable state.
The new model supports mutability at the graph edges, allowing both user
inputs and buffers to be mutated (there is some more support than that,
but that is all I fully tracked through to implementation).
Therefore, when we receive programs like this, we now can selectively
enable mutation at the edges. This happens to be the mutability model
that IREE supports, which I expect to be a primary beneficiary. However,
there is nothing stopping anyone else from handling the `!torch.tensor`
types and the existing copy/overwrite ops that will be selectively
added.
Since this relies on API changes that will not release until 2.3, I'm
being a bit cautious about not refactoring existing facilities.
This test exposes issues that need fixing
(1) propagate sparsity into the FX graph (over elt-wise) (2) batched
dimensions need a new "dense(batch)" format
Various improvements on sparsity metadata:
(1) define single data structure for all sparsity related metadata
(2) handle batched dense dimensions, as well as dense subtensor
dimensions
(3) refine sparsity propagation for deeper networks
This PR introduces a sparse_jit wrapper that can run simple models with
sparse tensor inputs end-to-end. The implementation shows all required
components on modifying sparse tensor types with a 1:N relation on the
call sites. Two tests shows that the JIT runs end-to-end while computing
the correct results.
More details to follow (generalizing to COO and different ranks, as well
as support for *output* sparse tensors), but the general concepts are
all here now.
**_Update: Thanks to Rob, bump to proper LLVM/MLIR hash is done!_**
_**NOTE that all parameter passing changes are nicely done "downstream"
in MLIR, so very little changes are required in torch-mlir code
proper**_
---------
Co-authored-by: Franz Haniel <77495327+frafranz@users.noreply.github.com>
Co-authored-by: Franz Haniel <franz.haniel@amd.com>
Note that we are waiting for actual FX traced graph support for sparse
tensors. For details see
https://github.com/pytorch/pytorch/issues/117188
Until then, however, we provide this clever importer that builds the FX
traced graph for for the dense case and then puts a sparse annotation
back on the parameters.
With import test.