Existing lowering via aten.view does not work as well for dynamic shapes
as the lowering to tensor.expand must re-infer dynamic shape matching.
Better to directly lower.
A bunch of small fixes are interlinked and trigger crashes if not
addressed as a group. This includes:
- aten view when expand from a rank-0 tensor
- slice folder with negative indices
- `aten._shape_as_tensor` folder on a rank-0 tensor
- `aten.cat` of a tensor with a length-0 tensor
Torch lowering only supported the most recent version. Refactored the
lowering so more easily handle default values and optional operands /
attributes.
Strided slicing can occur with a negative stride. In these cases we need
to bound end differently. This included removing a function that was
generating bad limits.
We can route the torch tests via `onnx` using the `torch.onnx.export`
tooling. We can then reimport, lower to torch, and compile to linalg to
validate the onnx path is working correctly.
The current implementation exposes some failures in the `onnx` path so
we cannot enable the onnx test suite yet due to segmentation faults.
This commit adds the OnnxToTorch lowering for cosh, acosh, asin, asinh,
and atanh op.
This commit also adds the TorchToLinalg lowering for acosh, asin, asinh,
and atanh op.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
By updating convertScalarToDtype invocation pass original source and
destination datatypes for the add op. Also fixes a potential problem
with the sub op.
---------
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
There is no lowering support for math::AbsIOp, so if the operand is an
integer type, it will fail to lower to math::AbsFOp since the op operand
#0 must be floating-point-like.
Lowering of torch.aten.all.dim to linalg.
Per PyTorch documentation:
> This function matches the behaviour of NumPy in returning output of
dtype bool for all supported dtypes except uint8. For uint8 the dtype of
output is uint8 itself.
Since there is no support for ui8 in torch-mlir currently
(https://github.com/llvm/torch-mlir/pull/1384#issuecomment-1260011334)
implementation returns failure for that case.
Leaning on the QDQ functionality in torch we can support the QLinearConv
operation by piggybacking through `torch.Convolution`. This includes
some changes such as allowing the `onnx` rewriter to run recursively.
Doing so allows `QLinearConv` to decopmose to `onnx.Convolution` which
is then lowered to `torch`.
We do not support average pool when `countIncludePad is set to false.
However if the input is unpadded then the setting of the boolean is
unneeded. Extended use by checking if padding is zero before rejecting
the lowering.
Linalg has quantized specific operations. We can lower to these
operations when there is a known zeropoint and scale operations. This
allows the `convolution` to occur with lower bitwidth's, improving the
overall performance.
After noticing a number of commits with unrelated formatting changes,
I think something was changed with clang-format at one point and we're
seeing a number of unrelated changes. Doing a refresh can help avoid
this.
The changes made here came from
```
find lib -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
find include -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
find projects -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
```
This preserves sparsity at the most obvious places of lowering TORCH
tensors to MLIR RankedTensorType tensors. Other places are marked for
audit. With some initial lowering tests.
This includes custom op matching for decomposed operations and fusing
dequantization into dense operations. As a validation we compare
to the dequant+mm torch implementation.
The logic here is very similar to the conversion for AdaptiveAvgPool1d
#2661 with a few modifications:
1. buffVal = -inf instead of 0
2. the main linalg generic op accumulates a max, instead of a sum, to
the first output tensor
3. avg pooling requires dividing the sum pool by the kernel width, which
we stored as an auxilliary tensor (kSizeTensor). Here, the auxiliary
tensor will be recording the indices. Strangely enough, the only
signature available for this function is to return indices, and it
appears that they must be computed whether the user desires them or not.
See
[pytorch/torch/nn/functional.py](https://github.com/pytorch/pytorch/blob/main/torch/nn/functional.py#L1174).
Before writing other adaptive pooling conversions, the logic of this
decomposition should be rolled into a helper function that will work for
both max and avg pooling ops. Even the auxiliary tensor should likely be
automated. This code was written in a slightly more tedious way than
strictly necessary (often using loops to fill SmallVectors up to rank-2,
which is only two in this case), in order to more easily facilitate the
transition to a helper function.
convolution with [time,batch,channel] ordering, as opposed to the
default [batch, channel, time]. Currently implementing by transposing
the input and output, but may need to get its own implementation in the
future because this is supposed to be an op that gives a speedup. This
is used by fairseq
(https://github.com/facebookresearch/fairseq/issues/172).
(in case you were wondering like me, this is different from transposed
convolution. Transposed convolution has fractional strides).
---------
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
Co-authored-by: Frederik Harwath <frederik.harwath@amd.com>
Introduced in 704cfdaf08 of @wu-s-john
g++ compiler error:
Pooling.cpp:177:13: error: explicit specialization in non-namespace
scope ‘class
Design looks good, g++ is just freaking out for no good reason.
Un-nesting the template classes fixes the error.
We don't have g++ CI. This hopefully happens infrequently enough that we
can just fix manually. My service to those folks who really like
building with g++... :)
Handle both `torch.dequantize` and `torch.quantize_per_tensor` including
the op based quantization parameter tracking. This includes adding
`qint32` to torch types as it was missing during the initial type
inclusion.
For testing we only have `torch.int8` and `torch.float` types on
function boundaries as the `qint8` types require passing the scale
and zero point quantization information which is not supported yet.
Adaptive pooling ops can only be decomposed into their non-adaptive
counterparts in trivial cases.
For example, the current decomposition for AtenAdaptiveAvgPool1dOp in
DecomposeComplexOps.cpp supports outSize = inSize (i.e., do literally
nothing), and outSize = 1 (i.e., do a batched average).
The reason adaptive pooling ops are difficult to lower to linalg is that
they are not constantly strided. They are computed by taking an input
tensor of shape (N, C, Hin), and an output size Hout, and computing the
output tensor at position (n,c, h) in the following way:
1. compute st(h) = (h*Hin)//Hout
2. compute en(h) = 1 + ((h+1)*Hin -1)//Hout
3. apply a computation (max or avg) to the slice: INPUT[n, c,
st(h):en(h)]
The provided sample implementation (for ConvertAtenAdaptiveAvgPool1dOp)
uses tensor.extract to access the input tensor inside the payload of a
linalg generic op. This is likely an unattractive use of linalg generic
ops, which is why I am asking for some more targeted feedback on the
validity of this approach before attempting to support the many other
adaptive pooling ops.
Specifically:
- Is the performance of this implementation bad enough to warrant
targeting different dialects entirely? e.g. TMtensor/linalg ext/ etc.
- If the provided implementation is of acceptable performance to the
community, then is it permissable to remove the Adaptive pooling
decompositions from DecomposeComplexOps.cpp? Based on the current
structure of the -torch-decompose-complex-ops pass, it does not seem
possible to only decompose the adaptive ops in special cases (it seems
to get stuck in an infinite loop on a match failure). I would be happy
to instead incorporate the case logic into the conversion directly, and
remove the decompositions once they are rendered completely obsolete.
As long as this approach is acceptable, I can clean up the
implementation with some helper functions, and quickly add support for
each of the remaining Adaptive pooling ops.
Adds a lowering to Linalg for reflection_pad1d. Based on ideas/code from draft PR
https://github.com/llvm/torch-mlir/pull/2693.
---------
Co-authored-by: Kumar Deepak <kumar@xilinx.com>
This replaces the lowering of aten.cat with tensor.concat, allowing more
efficient handling of concatenations in downstream flows. The refbackend
populates concat decomposition patterns that can be used to recover the
previous lowering.
This commit adds the OnnxToTorch support for BitwiseXor, BitwiseOr, Div, Equal, Cast,
Ceil, Floor, Cos, and Clip op.
This commit also adds the TorchToLinalg support for aten.clamp.Tensor and aten.clamp_min.Tensor op.
Signed-Off By: vivekkhandelwal1424@gmail.com
The linalg Op `linalg.conv_2d_ngchw_fgchw` had a bug where
1. Weights were accessed as G,F,C,H,W instead of as F,G,C,H,W
2. Output was accessed as N,F,G,H,W instead of as N,G,F,H,W
Now this has been fixed in
https://github.com/llvm/llvm-project/pull/73855 which broke the
torch-mlir lowering to that Op.
This patch switches lowering in torch-mlir to the newly introduced
`linalg.conv_2d_ngchw_gfchw` op which accesses weights in an order that
is compatible with PyTorch's memory layout.
Fix https://github.com/llvm/torch-mlir/issues/2622
Despite aten.mm requiring the input and output types match, we still opt
to maintain signedness semantics in case later passes try to do any sort
of integer type narrowing.
The function `getTypeForScalarType` currently takes an argument to
specify the signedness of integer types. This is leakage of backend
specific requirements into the torch dialect world. Because
`getTypeForScalarType` is a utility function for the torch dialect, it
should only produce types that match the sign conventions used by
PyTorch (regular integers are signed and unsigned integers are
unsigned).
This commit removes the signedness argument from
`getTypeForScalarType`, and moves the backend specific handling of
integer types to the backend code.
This commit adds the OnnxToTorch support for Atan, Bitshift, BitwiseAnd,
and BitwiseNot op.
This commit also adds the TorchToLinalg support for AtenBitwiseLeftShiftTensorOp.
Signed-Off By: vivekkhandelwal@nod-labs.com
Adds support for lowering to prims split_op.
Similar design to collapse op lowering in
https://github.com/llvm/torch-mlir/pull/2572, with some
small differences, because the split_dim op (in pytorch) is
view-changing whereas the collapse is not. The difference
means that
1) it must be registered in the function Torch::isViewLikeOp
2) it must be be added to the "expected fail" set for the torch dynamo backend.
The logic for lowering the aten view op to linalg is fairly complex.
In this PR I have tried to follow all non-failing paths through the
lowering and add unit tests where they're missing.
There is 1 logical change to the lowering: redundant tensor.cast ops
(same source and destination type) are folded.
Steps taken:
1) add generator code to torch_ods_gen.py, run update_torch_ods.sh
2) add (custom) shape and type inference generator code to
abstract_interp_lib_gen.py, run update_abstract_interp_lib.sh
3) Implement lowering to tensor.collapse_dims. Requires the `start` and
`end` values to be constant, else lowering fails
4) Update xfail_sets.py (append to LTC_XFAIL_SET) after running
/tools/e2e_test.sh --filter Collapse --verbose -c XX for all support
backends (XX).
Motivation:
- Supporting the collapse operation will be useful for lowering of
pixel_shuffle (see Issue #2559)
This is a first step towards the structure we discussed here:
https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20
There are two primary goals:
1. Separate the core project (C++ dialects and conversions) from the
hard PyTorch dependencies. We move all such things into projects/pt1 as
a starting point since they are presently entangled with PT1-era APIs.
Additional work can be done to disentangle components from that
(specifically LTC is identified as likely ultimately living in a
`projects/ltc`).
2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed
without needing to co-exist with the original TorchScript path.
Very little changes in this path with respect to build layering or
options. These can be updated in a followup without commingling
directory structure changes.
This also takes steps toward a couple of other layering enhancements:
* Removes the llvm-external-projects/torch-mlir-dialects sub-project,
collapsing it into the main tree.
* Audits and fixes up the core C++ build to account for issues found
while moving things. This is just an opportunistic pass through but
roughly ~halves the number of build actions for the project from the
high 4000's to the low 2000's.
It deviates from the discussed plan by having a `projects/` tree instead
of `compat/`. As I was thinking about it, this will better accommodate
the follow-on code movement.
Once things are roughly in place and the CI passing, followups will
focus on more in-situ fixes and cleanups.
When importing dynamic shaped programs from Dynamo, via torch.compile or
torch.export, we can assume that strict symbolic shape checks have been
done prior to generating torch IR. Among other shape checking, this
eliminates the case where an unknown dimension can be dynamically '1' in
a way that signals a broadcast.
Adds a `isAssumingStrictSymbolicShapes` utility which consults a
`torch.assume_strict_symbolic_shapes` attribute on an enclosing scope
and returns true if present.
In the linalg pipeline, many runtime checks are elided when this returns
true.
This commit adds to the lowering of `aten.view` handling for the
following cases:
- `(..., a.size(i))` -> `(..., a.size(i), 1, ..., 1)`
- `(..., a.size(i), 1, ..., 1)` -> `(..., a.size(i))`
Fixes: https://github.com/llvm/torch-mlir/issues/2448
While trying to fix a bug in the `ConvertAtenViewOp` pattern in the
linalg backend, I realized that the pattern had become quite complex and
had accumulated some dead code, making it hard to reason about.
This commit simplifies the pattern quite a bit. The main changes are:
1. All the static helper functions in the `ConvertAtenViewOp` class have
been simplified, both in their signature and their body. Each one now
performs simple calculations on arrays, and take the least number of
arguments necessary.
2. The body of [the `while`
loop](9fce566b0c/lib/Conversion/TorchToLinalg/DataMovement.cpp (L407))
inside the main pattern has been changed to work on `MutableArrayRef`
slices, to avoid having to keep track of `start` and `end` indices for
the input and output shape arrays.
3. All the heuristics used to determine the mapping between the input
and output dimensions are now in [this relatively short `if-else`
section](9fce566b0c/lib/Conversion/TorchToLinalg/DataMovement.cpp (L428-L460)),
making it easy to see what is going on.
4. Dead code was eliminated + updates to some of the documentation
comments
This commit does not add any new functionality to the
`ConvertAtenViewOp` pattern.
* view_as_real test case, allow dtype in testutils.randn
* abstract python upstream func implemented
* fixed upstream dtype func, implemented view_as_real backend op
* formatted AtenViewAsRealOp, removed change in e2etest/framework
* removed test suit from reshape_like.py, because it's moved to basic.py
* implemented C-API wrapper for mlirComplexF128 type
* fixed torch.complex dtype width in MLIR and Torch MLIR, deleted float16 dtype dict
* Changed IR input of aten fft_fft unit test
* code refactored
* code refactored and fixed ci test
* refactored: removed white spaces, and rolled back to having both input/output affine expr
* refactored: deleted output affine expr to reduce redundancy
* xfail ltc backend
* removed ComplexImag and ComplexReal from torchdynamo xfail set
* copied and pasted from main branch as there's no change to be made in this file
* refactored abstract_interp_lib_gen.py
* refactored: torchtypes.td, formatted, removed commented out code
This commit updates the `llvm-project` and `mlir-hlo` submodules to
commits:
llvm-project: a3f2751f782f3cdc6ba4790488ec20163a40ac37
mlir-hlo: 97c7e4b4506c3a2441c923e592833f45da439009
Changes made:
- Rename `getSuccessorEntryOperands` with `getEntrySuccessorOperands`
and remove `operands` from
`getSuccessorRegions` (https://reviews.llvm.org/D157506)
- Make `TypeConverter` a `const` (https://reviews.llvm.org/D157601)
This commit adds the support for index.Tensor op when the index values
are negative. This commit wraps around the index values by checking
their values at run time.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
check the return type of the division to figure out whether to use
the floating point implementation of a division or to use the integer.
the issue rose from the fact that the inputs are all integer but the
result was casted to floating point. The conversion then chose to
use the integer implementation of division which is not legal in tosa
when all the inputs get casted to floating point.
fix(TorchToLinalg): AtenDivScalarOp
upcast self operand as well if applicable, the self operand must also
be casted to float as it can be an integer.
* add support for mhlo
* Add Test for torch.ne
* fix torch.ne shape/add static test case
* add support for static torch.ne
---------
Co-authored-by: root <root@n31-177-039.byted.org>
When the user does not specify the `stride` value in 2d pooling ops,
`stride` is given the value of an empty list. However, the current
lowerings for pooling ops assumed that the `stride` operand would
always be a list of two ints, leading to crashes when that was not the
case. This commit fixes the crashes by setting the value of `stride`
to `kernel_size` when `stride` is the empty list, since this is the
default `stride` value specified in PyTorch docs. See:
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d
The current decomposition for `aten.randn.generator` does not specify
the `dtype` argument of the empty tensors created to store the random
values. This leads to invalid IR when the output type of the `randn`
op is not the default PyTorch dtype.