The last llvm bump in https://github.com/llvm/torch-mlir/pull/2511
pointed to
b44b3494f6,
however the bazel build upstream was not clean at this point:
```
ERROR: /root/.cache/bazel/_bazel_root/b89349c08f7224396763d14fe35cba11/external/llvm-project/mlir/BUILD.bazel:5837:18: TdGenerate
external/llvm-project/mlir/include/mlir/Dialect/LLVMIR/NVVMOpsInterface.h.inc failed: (Exit 1): mlir-tblgen failed: error executing command ...
external/llvm-project/mlir/include/mlir/Dialect/LLVMIR/NVVMOps.td:20:9: error: Could not find include file 'mlir/Dialect/LLVMIR/BasicPtxBuilderInterface.td'
include "mlir/Dialect/LLVMIR/BasicPtxBuilderInterface.td"
^
external/llvm-project/mlir/include/mlir/Dialect/LLVMIR/NVVMOps.td:20:9: error: Unexpected token at top level
include "mlir/Dialect/LLVMIR/BasicPtxBuilderInterface.td"
^
```
The bazel fixes followed in a subsequent commit at
28b27c1b10.
This PR bumps LLVM by a few more commits (to include the bazel fixes)
which helps restore Torch-MLIR's bazel build back to 🟢 .
GHA workflow to test bazel build:
https://github.com/sjain-stanford/torch-mlir/actions/runs/6555101471/job/17803082508
Add aten.isclose op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests
To test e2e tosa lowering:
`python -m e2e_testing.main -v -c=tosa`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Add aten.unflatten.int op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests
To test e2e tosa lowering:
`python -m e2e_testing.main -v -c=tosa`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Strict symbolic shapes allow us to assume numpy-style dynamic broadcasts
never occur. This allows us to strengthen the folder for broadcasts to
cases where the rank is the same and all shapes match (including dynamic
sentinel values).
Add linspace/cumprod/roll ops to ODS and add shape inference functions
to make it work with LTC.
Also, add some tensor utils to LTC library for searching for non-detach
copy nodes.
Set PyTorch and TorchVision version to nightly release 2023-09-28.
aten.baddbmm changes done because upstream PyTorch has now added
support for fp16 gemm on CPU.
Refer: 9399e0b1ff
When importing dynamic shaped programs from Dynamo, via torch.compile or
torch.export, we can assume that strict symbolic shape checks have been
done prior to generating torch IR. Among other shape checking, this
eliminates the case where an unknown dimension can be dynamically '1' in
a way that signals a broadcast.
Adds a `isAssumingStrictSymbolicShapes` utility which consults a
`torch.assume_strict_symbolic_shapes` attribute on an enclosing scope
and returns true if present.
In the linalg pipeline, many runtime checks are elided when this returns
true.
The LTC backend has drifted from being able to pass tests on the stable
PyTorch version, so pinning to nightly on ARM.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds to the lowering of `aten.view` handling for the
following cases:
- `(..., a.size(i))` -> `(..., a.size(i), 1, ..., 1)`
- `(..., a.size(i), 1, ..., 1)` -> `(..., a.size(i))`
Fixes: https://github.com/llvm/torch-mlir/issues/2448
Set PyTorch and TorchVision version to nightly release 2023-09-26.
aten._convolution.deprecated changes done because upstream PyTorch has
now added support for fp16 native convolution on CPU.
Refer: 7c9052165a
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
While trying to fix a bug in the `ConvertAtenViewOp` pattern in the
linalg backend, I realized that the pattern had become quite complex and
had accumulated some dead code, making it hard to reason about.
This commit simplifies the pattern quite a bit. The main changes are:
1. All the static helper functions in the `ConvertAtenViewOp` class have
been simplified, both in their signature and their body. Each one now
performs simple calculations on arrays, and take the least number of
arguments necessary.
2. The body of [the `while`
loop](9fce566b0c/lib/Conversion/TorchToLinalg/DataMovement.cpp (L407))
inside the main pattern has been changed to work on `MutableArrayRef`
slices, to avoid having to keep track of `start` and `end` indices for
the input and output shape arrays.
3. All the heuristics used to determine the mapping between the input
and output dimensions are now in [this relatively short `if-else`
section](9fce566b0c/lib/Conversion/TorchToLinalg/DataMovement.cpp (L428-L460)),
making it easy to see what is going on.
4. Dead code was eliminated + updates to some of the documentation
comments
This commit does not add any new functionality to the
`ConvertAtenViewOp` pattern.
Making the same PR with #2457, as I accidentally thought the review was already made and merged it (reverted).
Add decompose empty_strided op.
Referring to #1776, this decomposition op only supports default stride values, because accessing the tensor or indexing over that, the indices are determined by the strides.
In MLIR, this is not implicitly supported but assumes that the strides are default while iterating over the tensor.
At some point in the past month, stablehlo gained a number of patches that implement a non-trivial bit of threaded reference code. It fails to compile in Windows in pretty catastrophic ways.
But this isn't the main problem: by way of the MLIR CMake macros being used, if we include stablehlo before our code, we end up building the whole project, whether needed or not.
We just have to do this: I ran into an issue today where I needed to make a one line patch to stablehlo to work around a compiler issue, and it is completely unapparent how to do so given that the mlir-hlo repo is a read-only export and is at the tail end of a multi-week integration chain from the open-source stablehlo repo.
We've discussed this often enough and gotten +1 from everyone that they are ok with taking the e2e testing hit if it becomes necessary: It is necessary as the current situation is unmanageable.
Looking at it, I expect it wouldn't actually be very difficult to build a little runner binary out of the stablehlo interpreter and subprocess call that in order to get the testing coverage back. I leave that as an exercise to the users of this part of the stack and recommend following the breadcrumbs from the deleted python/torch_mlir_e2e_test/stablehlo_backends/linalg_on_tensors.py file and the main.py changes.
Note that I am pointing us at a stablehlo fork for the moment until it is apparent that we don't need to carry any local patches to it. We can update this in a few days if everything is clear.
Corresponding commits:
* mlir-hlo: 16886a108eff5197f816ca0f1950cc5ff1b078d9
* stablehlo: 77a59815a82b34f7b08ed2d42a711d9920682d0e
* llvm-project: 4acc3ffbb0af5631bc7916aeff3570f448899647
* Adapt to ByteCodeOpInterface changes.
* Adapt to RegionBranchPoint changes: https://reviews.llvm.org/D159116
* Adapt inferReturnTypes to get the value from properties.
* Adapt invalid.mlir to properties syntax
* [TOSA] Align with custom assembly format change.
* [TOSA] handle change of axis to int32 type
* [TOSA] Restore improper convert to i32
Landing with Windows broken (it cannot be fixed because of the way the mlir-hlo dep is inserted). Will followup with an untangling.
---------
Co-authored-by: TatWai Chong <tatwai.chong@arm.com>
Co-authored-by: Eric Kunze <eric.kunze@arm.com>