In order to verify if a given IR satisfies the backend contract, the
verifier needs to know if decompositions took place, and if so, which
ops were decomposed and which were not.
This commit adds two arguments to `verifyBackendContractPass` to
specify if decompositions took place and which ops to consider backend
legal, similar to the arguments of `LowerToBackendContractPass`.
* [custom op] Generalize shape library logic to work with dtypes
This commit generalizes the shape library logic, so that dtype rules
for ops can also be expressed using the same mechanism. In other
words, each op can now have a shape function and a dtype function
specified in Python that is imported during lowering to calculate the
shapes and dtypes throught a program. For more information about how
to specify a dtype function, see the updated
`docs/adding_a_shape_and_dtype_function.md`.
For those not familiar with how the shape library works, the file
`docs/calculations_lib.md` provides an overview.
The current implementation of `DecomposeComplexOps` fails if an op
expected to be decomposed does not get decomposed in the first
iteration of the `createTorchSimplificationPipeline` in
`LowerToBackendContractPass`. However, some graphs require multiple
iterations of `createTorchSimplificationPipeline` to fully propagate
all statically knowable information, such as dtypes and shapes, to the
entire graph, sometimes resulting in the need to run
`DecomposeComplexOps` more than once.
This commit changes `DecomposeComplexOps` to use a greedy algorithm
for pattern application and moves the legalization check of ops to the
`LowerToBackendContractPass` to allow for the `DecomposeComplexOps` to
run more than once.
- Support for non-prefixed accessors has been removed. See:
https://reviews.llvm.org/D136727
- Rename `operands` to `methodOperands` in `prim.CallMethod` since the
name `operands` overlaps with a builtin method name. See:
https://reviews.llvm.org/D136727
- Add passes in refbackend to lower memref.subview. See:
https://reviews.llvm.org/D136377
- Replace `CopyToValueTensorOps` first in `RewriteViewLikeSubgraph` in
maximize-value-semantics.
The current implementation of the `RewriteViewLikeSubgraph` pass in
maximize-value-semantics creates temporarily invalid IR. In
particular, given a forward slice starting from a
`CopyToNonValueTensorOp` and ending in `CopyToValueTensorOp`s, the
pass first replaces all uses of the `CopyToNonValueTensorOp` with
its operand, which results in all the `CopyToValueTensorOp` users
having their operand have type `!torch.vtensor`, which is invalid.
The correct way to do things is to first replace all the
`CopyToValueTensorOp`s with their operand, and then replace all uses
of the `CopyToNonValueTensorOp` with its operand.
This only started failing now because the generated accessor
`getOperand` for the `CopyToValueTensorOp` now returns a
`TypedValue<NonValueTensorType>`, which has an assert checking that
the value returned is of the expected type.
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Summary of changes:
- Replace call to `MemoryEffectOpInterface::hasNoEffect`
with `isMemoryEffectFree`.
- Make fix for the dynamic dims, since
`kDynamicSize` value changed to
`std::numeric_limits<int64_t>::min()` from `-1` in llvm
- `makeShapeLLVMCompatible` and `makeShapeTorchCompatible`
utilities convert shapes in order to remain consistent
with the Torch and MLIR semantics.
- Update tags
llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
The current implementation sets the `nextSeed` value to `temp & 127`,
which is wrong. The last step of the LCG algorithm for the multiplier
and increment chosen should be `temp % 2^{64} = temp & (1 <<
63)`. However, because we are dealing with i64 values, the modulus
operation happens automatically, so it is not needed.
See Donald Knuth's values for LCG here:
https://en.wikipedia.org/wiki/Linear_congruential_generator
This commit fixes the aten.mean and aten.mean.dim op decomposition
for supporting large-sized inputs.
This commit also fixes the formatting for the file stats.py
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Adds support to run `.mlir` LIT tests in bazel.
```
bazel test @torch-mlir//test/...
```
Follow-on PR will contain these updates:
- Add tests to GHA CI workflow
- Add `.py` LIT tests to bazel
* build: update llvm tag to 74fb770d
This commit makes the following changes needed to update bump LLVM:
+ replace usages of `tensor::createPadScalarOp`, see https://reviews.llvm.org/D136493
+ Update file checks
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
This commit makes the following changes needed to update bump LLVM:
- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
This commit adds lowering of `aten.div.int` and `aten.bitwise_or.Tensor`
ops. Both these ops are required in order to support bloom_560m model.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
* Fix c10::prim::Constant conversion; Added CAPI for passes; Added passes to base lazy backend
* Update ivalue_importer to use ImportOptions; Added tests for non-value/value tensor types
* Added tests for scalar Constant import; Updated MB::importFunction to use ImportOptions
* Test updates
* Move back module variable name
* Remove RefineTypes from TorchMlirLoweringContext::Build()
* Rename pass; Remove passes from base lazy backend
* Rename pass to VerifyBackendContractPass
* Aligned cmd pass name; Fixed TorchConversion passes registration
* test: allow spaces in path to Python executable
On Windows, the path to the Python binary may contain spaces, so this
patch adds quotes around the path to the python executable.
Thanks to @sstamenova for suggesting the fix!
* python: remove header file that causes Windows build failures
Similar to https://reviews.llvm.org/D125284, we can safely remove this
header file without affecting the build on either Linux. It is
necessary to remove this header file on Windows builds since otherwise
it causes build errors.
* python: drop `TORCH_API` from function defined in Torch-MLIR
`TORCH_API` should apply to functions that are either exported by
libtorch.so or ones that are imported from libtorch.so by its downstream
consumers (like Torch-MLIR). Neither case applies to the
`importJitFunctionAsFuncOp()` function, since it is defined in
Torch-MLIR (and thus outside libtorch.so). This patch fixes the problem
by dropping `TORCH_API` from that function's declaration.
* python: make output of class anotations deterministic
The `class-annotator-repr.py` test checks for class annotations in a
specific order, but prior to this patch, the order was
non-deterministic, since the code iterated on an _unordered_ map.
This patch makes the iteration order deterministic through two changes:
1. using a sorted map
2. using the class qualified name instead of the address of the class in
memory
* test: use Python3_EXECUTABLE as interpreter path for consistency
This ensures that tests use the Python3 version that was detected using
CMake, instead of whichever python version that happens to be in the
PATH variable when invoking the test.
* test: fix RUN string
The parenthesis syntax does not run on Windows (the shell interprets the
`(` character as part of the path). Moreover, the ODR violation in the
comment no longer seems to apply.
* python: port parallel test framework to Windows
Since Windows does not support `fork` natively, Python's
`multiprocessing` module needs to use `spawn` on Windows. However, to
use `spawn`, the multiprocessing module serializes (or pickles) the
worker function and its arguments. Sadly, the multiprocessing module
(both the default one in Python and the one that is extended in PyTorch)
is unable to serialize lambda functions (see
https://stackoverflow.com/a/19985580) for detals.
Unfortunately, given how our tests are structured, we require that the
function under test is passed as an argument to another function, so we
cannot sidestep our use of lambda functions.
To resolve this problem, this patch makes use of the `multiprocess` and
`dill` Python modules, which together offers a multiprocessing mechanism
that can serialize lambda functions. The multiprocess module also
offers a process pool, which simplifies the code for our parallel
testing framework.
It seems as though an upstream change in PyTorch has caused the module
dump to include not just the module being tested, but also several
seemingly unrelated functions in the `torch._decom.decompositions`
namespace. The presence of these new functions caused lit to match
variables against incorrect statements (i.e. statements in the
unrelated functions instead of the module under test).
This patch inserts `CHECK-LABEL` statements in the failing tests so that
lit ignores these unrelated functions and only checks the statements at
or after the test module definition.
- Update MHLO commit to build with LLVM commit hash 00d648bd
- Update TorchToMhlo code to work with Stablehlo
- Re-enabled two failing TOSA tests, thus resolving Github Issue #1231
We were already hitting many cases where backends different in terms of
the legal ops that they wanted. This caused unnecessary coupling between
the backends. Examples:
- https://github.com/llvm/torch-mlir/pull/1161
- https://github.com/llvm/torch-mlir/pull/862
This PR centralizes all compilation to go through `torch_mlir.compile`
so that we can keep the logic centralized there. We should move these
lists closer to each backend. Especially cases like
https://github.com/llvm/torch-mlir/pull/862 where blocking a
decomposition is necessary to avoid a crash emphasize that the set of
decompositions is tightly coupled to the backend, and should be
"controlled by the backend" and not something arbitrarily tweakable.
Also:
- Fix a small bug in the way we passed through the backendLegalOps
option.
- Add better error messages in `torch_mlir.compile` for import errors.
One of the simplifications made by the pass `RefinePublicReturn`
currently only happens if the tensor in question only has one
user. However, the current method of checking this does not correctly
handle the case of a user having multiple uses of the same
tensor. This commit makes sure only unique users are considered.
This is a first step towards formalizing the set of ops in our backend
contract. The goal is to eventually formalize `torch` dialect ops into 3
categories:
1. Legal in backend contract
2. Illegal in backend contract
3. Conditionally legal in backend contract
The "conditionally legal" set are the ops that we can optionally
decompose for backends.
This patch adds relevant pass options for this throughout the compiler,
in preparation for a new set of traits which will formalize this
classification.
This introduces a new pass LowerToBackendContract (better name very
welcome) which performs the bulk of the simplifications that we do,
such as
- shape refinement
- dtype refinement
- maximizing value semantics
- inlining global slots
- decomposing complex ops
The key difference from before is that it iterates the set of
transformations, which can help to break a number of "catch-22" issues
where one simplification depends on another, the latest example being
here:
https://github.com/llvm/torch-mlir/issues/1131
This also exposed that RefineTypes was sometimes crashing/asserting for
certain inputs. This commit hardens it a bit.
Summary of changes:
- Switch to C++17 (similar to https://reviews.llvm.org/D131348)
- Update MHLO to build with LLVM commit hash 061e0189
- Replace deprecated `hasValue()` and `getValue()` with `has_value()`
and `value()` respectively (https://reviews.llvm.org/D131349)
- Use `TypedAttr` (https://reviews.llvm.org/D130092)
- Use updated assembly format of `mhlo.compare` op (commit
d03ef01e70fbf9afd0fa1976fbb7ed31838929b3 in MHLO repo)
Rather than a per-global-slot initializer region, we now have one for
the whole module. For example, it might look like this:
```
torch.global_slot "private" @tensor : !torch.tensor
torch.global_slot "private" @list : !torch.list<tensor>
torch.global_slot.module_initializer {
%0 = torch.tensor.literal(dense<0.0> : tensor<f32>) : !torch.tensor
%1 = torch.prim.ListConstruct %0 : (!torch.tensor) -> !torch.list<tensor>
torch.initialize.global_slots [
@tensor(%0 : !torch.tensor)
@list(%1 : !torch.list<tensor>)
]
}
```
This new structure allows GlobalizeObjectGraph to create the initializer in a
much simpler way, avoiding the need to reason about whether different slots
alias each other. Reasoning about whether slots alias each other now is the
responsibility of InlineGlobalSlots, which has to do a much more complicated
analysis, implemented using MLIR's dataflow analysis framework.
Recommended review order:
- Check out the new IR constructs in the .mlir files of various passes
- Op definitions (*.td)
- Changes to GlobalizeObjectGraph pass.
- InlineGlobalSlots pass (~total rewrite)
- Misc changes:
- Moving torchMlirAdjustStaticInformation for sharing with C++ code.
- EraseModuleInitializer pass
To make this a bit nicer, it would be good to have a `torch.module` op
with an initializer region attached. That would be more invasive though.
This change has highlighted certain aspects of our project layering
which are worth calling out. None of our backends can handle global
slots, so we enforce that there are no global slots before backend
lowering. At an earlier stage in the project, we had aspirations of
transparently handling mutable global state and such, but for reasons
described below, that is no longer a goal. So really global slots should
be seen as a progressive lowering step as part of inlining all the
IValue's in the original program (GlobalizeObjectGraph is also one such
step).
Over time, with insights from work like IREE-JAX, it has become clear
that there isn't a reliable programming model we can compile for users
where we just transparently handle mutable global state (and some other
things, like lists and dictionaries). There is a need for an "outer
program" that orchestrates more restricted subroutines of the kind we
can handle in our compile flow here. The benefit of that is that it
decouples considerations like shapes, dtypes, etc. from the program
constructs used in the outer program. As long as the outer program can
efficiently invoke (pipelining/async/etc.) high-performance
data-parallel numerical subroutines of the kind we compile in our flow
here, then there is a complete programming model. This is also
consistent with the direction of upstream PyTorch which is becoming more
tracing-based (which inherently loses a lot of program structure, which
then has to be applied back with an "outer program" orchestrating the
traced subroutines).
follow up #761:
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is Float16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
* [MHLO] Support for dynamic shape in basic op conversion by introducing CHLO dialect
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
* [MHLO] Support I32 as shape tensor dtype
* [NFC] Add a 'TODO' annotation
- Includes a canonicalizer for `aten.add.t`needed for successfully lowering the shape function
- Only offers support for statically sized index tensors when there is more than one
- Dynamic shape support remains for single indexing tensors
This commit adds verifiers to the ops `ToBuiltinTensorOp` and
`FromBuiltinTensorOp` that make sure that the input and output have
the same shape and data type.
This enables building Pytorch from source in the CI.
The build should mostly hit the ccache.
Release builds will follow once we have some runtime on the CI.
In the interest of merging upstream LLVM quickly, a previous patch
(7f08169) updated the torch-mlir build to register all dialects and
passes through Python bindings. This patch limits the dialects and
passes to only those that are used in torch-mlir.
Key to this change are the removal of
`MLIRPythonExtension.RegisterEverything` and the introduction of a new
Python module (`_mlir_libs/_site_initialize_0.py`), where we register
the dialects and passes used by torch-mlir.
This commit adds the decomposition for `aten.var.dim` op.
This commit also make changes in the decomposition for `aten.var` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This patch adds a new pass `torch-verify-conversion-to-value-semantics`,
which looks for non-value semantics tensors to catch such tensors early
during compilation.
This pass requires `torch-refine-public-return` pass to ensure that
return operations are updated to use value tensors, followed by the
canonicalize pass to remove any dead ops that may use or produce
non-value tensors.
Prior to this patch, the canonicalizers for `AtenSizeOp` and
`AtenSizeIntOp` succeeded only if the tensor operand's type information
included the size of the requested dimension(s). We can extend the set
of optimizable cases by propagating types across operations whose result
type matches the input tensor type.
Specifically, this patch enables the canonicalizers for `AtenSizeOp` and
`AtenSizeIntOp` to see past `tensor_static_info_cast`,
`copy.to_vtensor`, and `copy.to_tensor` ops until it reaches the first
op whose result type contains size information for the requested
dimensions, with a maximum bound of 6 parent lookups to avoid indefinite
compilation times. All other encountered ops cause the canonicalizer to
give up.