In one of our downstreams, we encountered an internal assertion failure
in an intermediate pass from `AtenTensorOp::fold` invocation:
```
external/llvm-project/llvm/include/llvm/Support/Casting.h:650: decltype(auto) llvm::dyn_cast(const From &) [To = mlir::torch::Torch::NonValueTensorType, From = mlir::Type]: Assertion `detail::isPresent(Val) && "dyn_cast on a non-existent value"' failed.
```
for this snippet in the IR:
```
%arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[1,1,15360],f32>}
...
%218 = torch.aten.size %arg1 : !torch.tensor -> !torch.list<int>
%219 = torch.aten.tensor %218, %none, %none, %false : !torch.list<int>, !torch.none, !torch.none, !torch.bool -> !torch.tensor
```
Turns out this was
[fixed](https://github.com/llvm/torch-mlir/pull/3189/files#diff-dc8ed165c207918e606490eee3984b1ad51d7034e6aac36fc046bf47f6f03f4fR3719)
eventually (and we were on an old hash of torch-mlir). This PR submits
just the lit test for test coverage on that specific change:
```c++
OpFoldResult AtenTensorOp::fold(FoldAdaptor adaptor) {
auto resultTy = dyn_cast<ValueTensorType>(getType());
// lit test this
if (!resultTy || !resultTy.hasSizes() || !resultTy.hasDtype())
return nullptr;
...
```
1. truncates zero-points to i32
2. modifies the default accumulator type for i8 from i64 to i32.
3. now uses the input dtype to infer accumulator dtype.
Resolves#3384.
Many ONNX operators are defined by functions and therefore could be
expanded into simpler ONNX operations during importing, avoiding the
need for tools downstream to support these operators directly.
This commit adds this capability to onnx_importer.py. When importing a
node, the schema for the node's operator is retrieved. If the schema
provides a function for the operator, a specialized version for the
node's types and attributes will be created and imported as an MLIR
function with private visibility. An MLIR function call will then be
emitted, instead of a normal operator node. Caching is used to avoid
generating redundant functions within the same module.
In order to avoid a disruptive change to the importer output for a
large number of operators that already have TorchOnnxToTorch support,
an allowlist strategy is used by default. With this commit, only one
operator is allowlisted for expansion, MeanVarianceNormalization.
However, many other operators can be correctly expanded by the current
code, so hopefully the allowlist can be gradually extended. It is
possible to disable the allowlist in the configuration, in which case
all functions are expanded (useful for testing).
Tools downstream of the importer may now need to do inlining when
consuming the output of the importer, e.g.:
cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch
Explanations for subtle code changes:
- Looking up the correct schema and function for an operator requires
knowing the opset version. NodeImporter retrieves this from the
opset imports on the ModelProto retained by the GraphInfo. Previously,
the model_proto field on GraphInfo was None when importing a subgraph
in import_regions, but this conflicts with the new need for opset
version info. Since the apparent purpose of setting it to None was to
control how GraphInfo generates its input map, a new flag is added to
GraphInfo (is_subgraph) to control this behavior, so that the actual
ModelProto can now be provided without breaking this. This also turned
out to be useful for getting the Config via ModelInfo via GraphInfo.
- Some operators' functions are context-dependent, which means the
function definition depends on the types of the inputs. Therefore node
importing now needs to look up the types of a node's inputs, not just
its outputs as was the case previously. Consequently the operand to
find_type_proto_for_name() may now be a graph input or initializer in
some cases, so it has to be updated.
This implements the Onnx.NegativeLogLikelihoodLoss op using the
signature provided
[here](https://onnx.ai/onnx/operators/onnx__NegativeLogLikelihoodLoss.html)
by replacing it with a `NLLLossForward` op.
Additionally, I included a helper function `get_loss_reduction_enum` to
convert from a string `reduction` parameter to the corresponding
intended integer value since this is an operation that will be reused
for any loss function module. This differs from `get_reduction_enum` in
`TorchUpstream.cpp` which handles the `reduce` parameter from
`scatter_reduce` type operations.
There is currently no int16 quantization support in torch. This patch
adds a new mlir type to correspond to the missing "torch.qint16" type,
and enables lowering of quantization-related onnx ops using int16 types.
In follow-up patches, custom quantization logic for ops like
aten.matmul/aten.mm/aten.convolution may need to be revisited to allow
support for qint16. The passes in FuseQuantizedOps.cpp may also need
slight modifications.
Tests the basic constructs of registering a custom op and its abstract
implementations (with FakeTensors) in python, going through TorchDynamo
export, followed by importing the shape expressions in the Torch
dialect.
Also fixes the importer were previously the symbolic bind op insertion
was not gated in one place.
This commit adds the lowering for SequenceAt, SequenceEmpty,
SequenceInsert, SequenceErase op
Signed-Off By: Vivek Khandelwal<vivekkhandelwal1424@gmail.com>
Supports asymmetric padding by performing a torch.nn.functional.pad on
the input before performing the convolution.
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
This commit also adds the Torch declaration for aten.max_unpool2d and
aten.max_unpool3d op. The TorchToLinalg lowering for the same will be
added in a follow-up commit.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Updates:
- some unsupported modes are now going to report a match failure for
unsupported coordinate transformation modes.
- fixes a bug that was introduced in the last patch for resize (my
bad...)
- uses actual x and y coordinates for computing weights in bilinear
interpolation (rather than eps modified values)
- slightly simplifies the bilinear interpolation payload for readability
and performance
- passes coordinate transformation mode information from an onnx.Resize
op to the mode string for the aten._interpolate op. This allows us to
perform custom logic in the torch->linalg lowering to support
onnx.Resize options without losing the default behaviors of the
interpolate op.
This PR fixes the bugs for `Torch::AtenOneHotOp` by:
1) Using `Torch::kUnknownSize` as the default value for `numClasses` in
the pattern matching stage in `DecomposeAtenOneHotOp`
2) Adding `AtenIntScalarOp` to the patterns in `TorchToArith`
3) Handling both `int` and `float` types for `off` and `on` values in
`TorchOnnxToTorch` conversion
It also includes:
1) A new test in `TorchToArith/basic.mlir`, for `torch.aten.Int.Scalar`,
and
2) A new test in `decompose-complex-ops.mlir`, for `torch.aten.one_hot`
**Dependencies**
This PR is dependent on #3334.
This commit fixes the bugs for the `onnx.OneHot` operator by:
1) Converting negative indices to non-negative indices
2) Handling both `int` and `float` types for `off` and `on` values
3) Using the correct result type
It also includes a new unit test.
The old lowering only had logic for 2d (i.e. images). this patch allows
interpolation for n spatial dims, which is required for some 3d vision
models such as
- onnx/models/pytorch-3dunet_vaiq_int8
which successfully compiles and runs with this patch.