Commit Graph

403 Commits (41d45400be3feca0a982e2902c1681d5b2246ada)

Author SHA1 Message Date
Vivek Khandelwal 51dd462592 [MLIR][TORCH] Add E2E support for aten.ne.float_int op
This commit adds lowering of `aten.ne.float_int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-27 21:16:48 +05:30
Vivek Khandelwal 1f102cc400 [MLIR][TORCH] Add E2E support for aten.ge.float_int op
This commit adds lowering of `aten.ge.float_int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-27 21:16:48 +05:30
Vivek Khandelwal 564734b2d7 [MLIR][TORCH] Add E2E support for aten.ge.float op
This commit adds lowering of `aten.ge.float` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-27 21:16:48 +05:30
Vivek Khandelwal f5b6c4b601 [MLIR][TORCH] Add E2E support for aten.div.float op
This commit adds lowering of `aten.div.float` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-27 21:16:48 +05:30
Sean Silva 73cc2ac152 Ensure that imported function input type and block arg types are consistent.
I wasn't able to find exactly what frontend situation created it, but
`torch.jit.trace` will sometimes create functions where the
`jit::Block`'s param node has refined tensor types. So we need to adjust
the function's formal param types to those refined types.
2022-04-27 08:01:23 -07:00
Ashay Rane 9208bf0eb6
llvm: bump tag to e1318078 (#781)
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
2022-04-26 12:27:51 -07:00
Ashay Rane 9ec4712516
types: allow bf16 as result type for various tensor ops (#798)
Prior to this patch, the result type for several tensor operations could
only be float32, float64, or null.  This patch adds bf16 to the list of
allowed result types.
2022-04-26 11:55:58 -07:00
Vivek Khandelwal 769f3a8870 [MLIR][TORCH] Add E2E support for max_pool2d_with_indices op
This commit adds lowering of `max_pool2d_with_indices` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-18 21:05:19 +05:30
Ashay Rane a893c7d5cf
Add shape transfer function and lowering to linalg for aten.neg (#759)
* shape: add shape transfer function for aten.neg

Prior to this patch, the list of shape transfer functions did not
include `aten.neg`, which resulted in errors like below.

```
error: unsupported by backend lowering: tensor with unknown rank or dtype
note: see current operation: %0 = "torch.aten.neg"(%arg0) :
  (!torch.vtensor<[256,256],f32>) -> !torch.vtensor<*,f32>
note: this is likely due to a missing shape transfer function in shape_lib_gen.py
```

This patch fixes the problem by adding a shape transfer function to
reflect the point-wise nature of this operation.

* linalg: add translation of aten.neg operation

This patch adds a translation rule to lower `aten.neg` operations on
tensors to an `arith.negf` operation wrapped inside a `linalg.generic`
operation.  This patch also adds a rudimentary test.
2022-04-15 11:11:22 -07:00
Sean Silva e7721fb784 Fix error message.
RefineTypes doesn't handle shape refinement anymore.
2022-04-07 14:46:44 -07:00
Sean Silva c17c0a6ba2 Fix for 0-size dim inferred incorrectly.
The issue was in the canonicalizer for torch.aten.ge.int -- in cases
where the operands were swapped, it would miscompile. This issue is
fixed and folding support generalized to `torch.aten.size.int < 0` as
well.

Fixes #716
2022-03-30 16:36:15 -07:00
Gaurav Shukla 969785d1b6 [LINALG] Add E2E support for `aten.where.[Scalar|ScalarSelf|ScalarOther]` ops
This commit decomposes different variants of `aten.where.*` op into
`aten.where.Self` op. It covers `aten.where.Scalar`,
`aten.where.ScalarSelf` and `aten.where.ScalarOther` ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-30 20:36:48 +05:30
Vivek Khandelwal 2597c481f6 [MLIR][TORCH] Add E2E support for aten.new_empty op
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.

This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-30 13:21:01 +05:30
Sean Silva 140babd952 Add minimal support for Union types.
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287

Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
  along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
  that derefines to a UnionType (this also fixes #664).

There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
2022-03-29 17:45:48 -07:00
Liam Fitzpatrick f2269ced80
Improve list index normalization SimplifyShapeCalculations. (#710)
The reified code to compute the shape of torch.aten.constant_pad_nd
uses negative indices when setting list elements. This was not
converted to a positive offset in one place in SimplifyShapeCalculations
which prevented computation of the static shape.
2022-03-29 22:21:47 +02:00
Maksim Levental 25ba51b2af
This commit decomposes aten._reshape_alias op into aten.view op. (#690) 2022-03-28 23:54:28 -05:00
Sean Silva 776426ea4e [SimplifyShapeCalculations] Fix AbstractlyInterpretListOpsWithinABlock
The logic in the rewriting phase had a bug in case of a read-only op
coming before mutation ops. The logic would use the op itself as the
"latest literal", but that is not correct, because later on we replace
the op itself with the *final* "latest literal", assuming that all uses
of the op have been rewritten -- that was working in general, except for
any read-only ops at the beginning.

Big thanks to @ljfitz for the tiny reproducer!

Fixes #704
2022-03-28 13:18:35 -07:00
Anup Gangwar 5d7a6c2976
[tosa] Support for Aten[Unsqueeze|Contiguous|Dropout|Reshape|View] ops (#700) 2022-03-25 14:15:07 -07:00
Gaurav Shukla 02b6d04eb4 [LINALG] Add E2E support for `aten.zero_` op
This commit adds decomposition of `aten.zero_` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-25 12:46:50 +05:30
Gaurav Shukla 7c3ba25238 [LINALG] Add decomposition of `aten.dropout` op
- This commit adds decomposition of `aten.dropout` op. It also covers the
  training mode of the same op.
- It also adds lowering of `aten.sub.float` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-22 13:14:49 +05:30
Vivek Khandelwal 5b9bdfaf3f [MLIR][TORCH] Add E2E support for aten._to_copy op
This commit decomposes `aten._to_copy` op into
`valsem.aten.copy` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 19:12:37 +05:30
Vivek Khandelwal 13383b03b8 [MLIR][TORCH] Add value tensor variant to aten::copy_ op
This commit adds the op `ValsemVariantAtenCopyOp` that represents
`AtenCopy_Op` without the underscore. This is needed to make sure
that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenCopyOp`.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 19:12:37 +05:30
Vivek Khandelwal 4c0cd5c23d [MLIR][TORCH] Add E2E support for aten.expand_as op
This commit decomposes `aten.expand_as` op into `aten.broadcast_to` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 12:47:39 +05:30
Vigilans 63fb1e5aad Bump LLVM at 8361c5da30588d3d4a48eae648f53be1feb5cfad 2022-03-18 13:16:14 -04:00
Ramiro Leal-Cavazos 218b4875d5
Make conditions for type refinement of static cast less strict (#680)
This commit adds support for type refinement when
`torch.tensor_static_info_cast`s are involved, even when there are
users of the casted tensor that don't allow type refinements.

Originally the canonicalization pattern for
`torch.tensor_static_info_cast` would check if all the users of the
casted tensor allowed type refinements before making any changes. This
means that if at least one of the users did not allow type
refinements, the pattern would fail. This becomes an issue when doing
shape calculations because the calculations need the shape information
of each input tensor to be available before the calculation can be
simplified.
2022-03-18 09:10:12 -07:00
Vivek Khandelwal 8da7d90611 [MLIR][TORCH] Add E2E support for aten.index_put op
This commit decomposes `aten.index_put` op into
`valsem.aten.index_put_impl` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-16 22:02:02 +05:30
Vivek Khandelwal 3d95c3d6c9 [MLIR][TORCH] Add value tensor variant to aten::_index_put_impl_
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.

This commit also updates the `torch.bincount` op test cases.
2022-03-16 22:02:02 +05:30
Ramiro Leal-Cavazos 0bcc6d1075
Add maximize-value-semantics support for multiple non-value tensor inputs (#659)
This commit adds value semantics support for ops such as
`aten.view_as` and `aten.expand_as` that take two non-value 
tensors as input.
2022-03-15 18:13:45 -07:00
Sean Silva 92da4988f0 Improve "pseudo" op terminology.
The term "pseudo" is very vague and was getting confusing (I felt I had
to explain it in every comment referencing it). Instead, rework the
"pseudo" ops to instead be named:

- MLIR Syntax: `torch.valsem.*`
- C++ / ODS: `ValsemVariant*Op`

This makes it clear what the concept is, and avoids confusion with other
things that might be called "pseudo", since these are very specific and
should be 100% consistently named w.r.t. the non-valsem-variant ops that
they correspond to.
2022-03-15 17:57:52 -07:00
Sean Silva 84a9693006 Elide `!torch.` prefix in nested dialect types.
This leads to much more succinct types in many cases:

```
!torch.list<!torch.int>
!torch.list<int>

!torch.tuple<!torch.list<!torch.int>, !torch.list<!torch.int>>
!torch.tuple<list<int>, list<int>>

!torch.optional<!torch.list<!torch.int>>
!torch.optional<list<int>>

!torch.list<list<list<tensor>>>
!torch.list<!torch.list<!torch.list<!torch.tensor>>>
```

I would like to take this further and allow omitting the `!torch.`
prefix in all cases, but that's harder -- for example, we currently use
`FuncOp` for functions, and so I don't think we can customize the
printing there. It seems like it will be a longer road to getting that
level of customization.
2022-03-15 17:24:08 -07:00
Sean Silva a5fe0cf063 Introduce new shape library design.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.

This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.

Recommended review order:

1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
   `canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.

Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).

Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
2022-03-15 12:41:58 -07:00
Ramiro Leal-Cavazos 51e267aa37
Combine maximize-value-semantics rewrite patterns into one pattern (#642)
This commit replaces the two rewrite patterns of
maximize-value-semantics with a single pattern that captures the
behavior of both as well as other edge cases previously not
supported. The new pattern works by first performing alias analysis on
a subgraph to see if pattern is applicable, then rewriting all
non-value tensors to value tensors in a single go.
2022-03-10 09:36:52 -08:00
Gaurav Shukla e57d3f9774 [LINALG] Fix `aten.bernoulli` op lowering
- This commit adds E2E support for `aten.rand_like` and
  `aten.bernoulli_.Tensor` ops.
- The `aten.bernoulli(x)` was implemented as:
  `aten.bernoulli(x) = rand_like(x) < 0.5`, assuming 0.5 as default
  probability, whereas according to the pytorch documentation:
  https://pytorch.org/docs/stable/generated/torch.bernoulli.html#torch.bernoulli
  the input x in `aten.bernoulli(x)` is itself a tensor containing
  probabilities to be used for drawing the binary random number.
- So this commit fixes the `aten.bernoulli(x)` implementation as:
  `aten.bernoulli(x) = rand_like(x) < x`.
- It also fixes the case where the input to `aten.bernoulli_.float` is
  an integer tensor. In this case the input must be casted to float type
  before passing it as operand to `aten.rand_like` op.
  `aten.bernoulli_.float(x, p) = rand_like(float(x)) < p`.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-05 09:38:22 +05:30
Vivek Khandelwal af551bd9cd [MLIR][TORCH] Add E2E support for aten.full_like op
This commit decomposes `aten.full_like` op into `aten.empty_like`
and `aten.fill` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-04 21:58:23 +05:30
Vivek Khandelwal d61ae92eee [MLIR][TORCH] Add E2E support for aten.full op
This commit decomposes `aten.full` op into `aten.empty` and
`aten.fill` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-04 21:58:23 +05:30
Ramiro Leal-Cavazos 9ce62473f9
Add static type information support to `aten.bmm` (#636)
This commit adds static type information support to `aten.bmm`. This
is needed for the forward pass of Bert training.
2022-03-03 13:01:17 -08:00
Ramiro Leal-Cavazos 5ec70c175d
[LINALG] Add torch-to-linalg lowering for `TensorStaticInfoCastOp` (#634)
This commit adds a lowering for `TensorStaicInfoCastOp` that simply
replaces the op with the `tensor::CastOp`.
2022-03-02 13:35:26 -08:00
Yi Zhang 1d285f0153 Add aten.hardtanh e2e support. 2022-03-02 12:28:06 -05:00
Prashant Kumar 819f29316f Decompose aten.silu op
Decomposition of aten.silu.op is added as silu(x) = x * sigmoid(x).
2022-03-01 23:24:19 +05:30
Vivek Khandelwal ddd45d6068 [MLIR][TORCH] Add E2E support for aten.new_zeros, aten.new_ones op
This commit adds lowering of `aten.new_zeros` and `aten.new_ones` op

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-01 22:09:47 +05:30
Prashant Kumar 7c637eebc3 [LINALG] Decompose aten_hardswish op.
`aten.hardswish` op is decomposed into (x/6) * Relu6(x+3).
2022-02-25 21:59:27 +05:30
Gaurav Shukla 056cd2078d Revert "[LINALG] Decompose `aten.batch_norm` into `aten.native_batch_norm`"
This reverts commit 442ff4605c.
2022-02-25 15:46:55 +05:30
Ramiro Leal-Cavazos ba29d4f250
Add operand type invariant to `torch.overwrite.tensor.contents` (#606)
This commit adds the invariant to the op `torch.overwrite.tensor.contents` that
both of its operands have the same shape and size. In order to
maintain the invariant, special handling of this op is added to the
`RefineTypes` pass.
2022-02-22 11:41:46 -08:00
Ramiro Leal-Cavazos ea371a9bf2
Fix handling of view-like ops in `maximize-value-semantics` (#611)
This commit adds handling to the `maximize-value-semantics` pass for
the case where a view-like op depends on a tensor that has been
overwritten by a value tensor. The approach for removing the
dependency is to change the input to the view-like op to be a copy of
the value tensor that is being used to overwrite.

This commit also removes `AtenFill_ScalarOp` and
`AtenBernoulli_FloatOp` from the list of view-like ops, since these
ops now have a corresponding op with value semantics into which they
get converted in the `reduce-op-variants` pass.
2022-02-18 10:19:07 -08:00
Ramiro Leal-Cavazos 2823277f7c
Add static type information support to `aten.mm` (#602)
This commit adds static type information support to `aten.mm`. This is
needed for the forward pass of Bert training.
2022-02-18 09:56:48 -08:00
Nirvedh f8cb32faf0 LLVM bump
Major changes: opTrait changed to Trait, selectOp moved to arith dialect
assertOp moved to cf dialect
2022-02-16 15:28:13 -05:00
Gaurav Shukla 442ff4605c [LINALG] Decompose `aten.batch_norm` into `aten.native_batch_norm`
- This commit decomposes the `aten.batch_norm` op into the
  `aten.native_batch_norm` op, instead of lowering it to the
  `linalg.generic` op.
- It also adds run-time asserts in the `aten.native_batch_norm` lowering
  to make sure that the shape of the weight, bias, running_mean, and
  running_var must match the num of features.
- Since the `aten.native_batch_norm` op is not supported at TOSA backend,
  all the modules that are dependent on the `aten.native_batch_norm` op
  will fail and therefore they should be removed from the TOSA `passing`
  set.
- It also moves `checkNotNone` to utility.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-16 23:41:38 +05:30
Anup Gangwar c60468f141
[tosa] Support for Aten[Zeros|Ones|Fill_Scalar] ops (#604)
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>

Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
2022-02-16 09:53:51 -08:00
Prashant Kumar 8b79b5f48f Modify aten._log_softmax op decomposition for numerical stability.
`aten.log_softmax` is decomposed to be more numerically stable.
2022-02-16 12:26:17 +05:30
Gaurav Shukla cd21dda867 [LINALG] Add E2E support for `aten.Hardsigmoid` op
This commit adds lowering of `aten.Hardsigmoid` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-16 02:35:18 +05:30
Ramiro Leal-Cavazos 00a6e9c1bb
[LINALG] Add value tensor variant to `fill_.Scalar` (#600)
This commit adds the op `PseudoAtenFillScalarOp` that represents
`AtenFill_ScalarOp` without the underscore. The approach is the same
as in commit dd998fa4d4.

Adding this op allows for a simpler and more consistent version of the
`empty` and `empty_like` op e2e tests.
2022-02-15 11:58:03 -08:00
Ramiro Leal-Cavazos 413e6000d2
[LINALG] Add value tensor variant to `bernoulli_.float` (#597)
This commit adds the op `PseudoAtenBernoulliFloatOp` that represents
`AtenBernoulli_FloatOp` without the underscore. This is needed to make
sure that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value semantics
correctly.
2022-02-14 18:58:48 -08:00
Gaurav Shukla 78c7844c6c [LINALG] Add E2E support for `aten.eq.int` op
- This commit adds lowering of `aten.eq.int` op as a part of
  `convert-torch-to-std` pass.
- It also refactors the code for binary comparison ops lowering.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-15 01:37:35 +05:30
Gaurav Shukla f00d1686c8 [LINALG] Add E2E support for `aten.[Bool.Tensor|Float.Tensor]` op
- This commit adds lowering of `aten.Bool.Tensor` and
  `aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
  input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
  `aten.Float.Tensor` op, it folds to the scalar number.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-14 23:09:20 +05:30
Yi Zhang 9e7b6cab08 Add folder for aten.gt/lt.float 2022-02-14 12:34:01 -05:00
Henry Tu 73ac9a7e2e Added support for importing node prim::Constant with list type
Prior to this commit, importing a `prim::Constant` node with list type would result in an error since it was not supported. `ivalue_importer::importIValue` was modified to return the MlirValue corresponding to the root so its parent operation could be extracted.
2022-02-11 20:54:06 -05:00
Yi Zhang ce4d6d1f83 Remove hacky aten.select.int lowering code 2022-02-11 18:14:58 -05:00
Anup Gangwar 756b75fb2d
[tosa] Support for some ops and fix for Issue #532 (#575)
* [tosa] Support for AtenNe[Tensor|Scalar]Op, AtenLog2Op,
AtenBitwiseAndTensorOp, AtenSquareOp and AtenThresholdOp
* Fix for Issue #532 - Mixed input types for few ops and updated few
tests to use i32 instead of i64

Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>

Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
2022-02-11 12:30:02 -08:00
Prashant Kumar 258660deb6 Add aten.bernoulli decomposition.
aten.bernoulli is decomposed to aten.gtTensor(aten.uniform(x), x).
2022-02-11 00:35:33 +05:30
Prashant Kumar 102c497c4c Add decomposition of _log_softmax op.
Decompose _log_softmax into log(softmax(x)).
2022-02-10 23:17:26 +05:30
Prateek Gupta 318946a650 [TORCH][MLIR] Add E2E support for `aten._unsafe_view` op.
This commit adds decomposition of `aten._unsafe_view` op into
`aten.view` op.

Signed-Off-By: Prateek Gupta<prateek@nod-labs.com>
2022-02-10 22:28:58 +05:30
Gaurav Shukla bd177bdfc7 [TORCH][MLIR] Add run-time assert support in Torch-dialect
- This commit adds `aten.assert` op in the Torch dialect.
- The `aten.assert` op is lowered to `mlir::Assert` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-09 12:03:01 -05:00
Anup Gangwar f9f97ea184 * [tosa] Support for AtenNativeLayerNormOp
* [tosa] Support for AtenPermuteOp

Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
2022-02-04 14:46:31 -05:00
Prashant Kumar 68acc8696e Modify softmax decomposition to be more numerically stable.
The softmax decomposition is modified according to https://github.com/pytorch/functorch/blob/main/functorch/_src/decompositions.pytorch
to account for numerical stability. Also, modified aten.argmax lowering
to handle negative dimension.
2022-02-03 21:20:36 +05:30
Suraj Sudhir 1b505cbac5
RefineTypes fixes for TOSA backend (#557)
Handles Linear, Adaptive_AvgPool2D and FlattenUsintInts
Adds ResNet18 static model for TOSA

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2022-02-01 14:08:54 -08:00
Yi Zhang 0cb216a1ad [Torch][Linalg] Add basic support for RNG
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
2022-01-31 18:56:42 -05:00
Yi Zhang 5d9a15263a [TORCH] Add aten.std e2e support 2022-01-31 15:17:49 -05:00
Prashant Kumar e58b66bc3b Add lowering of `aten.max.dim` op.
Lowering of `aten.max.dim` op has been added.
2022-01-31 21:41:22 +05:30
Anup Gangwar 454fa9d123
* [tosa] Support for AtenFlattenUsingIntsOp (#548) 2022-01-28 21:38:56 -08:00
Liam Fitzpatrick 8bc028af05 Fold __is__ and unchecked_cast of derefine
The added e2e maxpool testcase from #545 was not getting a static shape
due to an unfolded prim.If when RefineTypes was called. This was because
of unfolded torch.iaten.__is__ and torch.prim.unchecked_cast operators
with torch.derefine operands.
2022-01-28 17:54:40 -05:00
Anup Gangwar 7a5736facd
* [tosa] Support for AtenReshapeOp (#543)
* [tosa] Support for AtenBatchNormOp

Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>

Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
2022-01-27 14:38:59 -08:00
stephenneuendorffer 3fd9b7789e
Bump LLVM to 881ff4e4ebe8cc0cc045c7c167cffb01f94f27f8 (#539) 2022-01-25 22:16:30 -08:00
Anup Gangwar f8080bd1c5
* [tosa] Support for AtenRsubScalarOp for scalar constants (#531)
* [tosa] Support for AtenCeilOp and AtenReciprocalOp
* [tosa] Support for comparator ops, Aten[Gt|Lt|Eq][Tensor|Scalar]Op with scalar constant
* [tosa] Support for Scalar variants of Aten[Mul|Div|Add|Sub] Ops with scalar constants

Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>

Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
2022-01-20 10:58:30 -08:00
Vivek Khandelwal 6fe70c7794 [MLIR][TORCH] Add E2E support for aten.index.Tensor op
This commit adds lowering of `aten.index.Tensor` op

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-01-19 13:37:56 +05:30
dan 3745f54489 Update external/llvm-project
- Add `qualified` to ods because of
https://reviews.llvm.org/D113873 and https://reviews.llvm.org/D116905
- Needed to revert https://github.com/llvm/torch-mlir/pull/520 as it
was based on an old torch version.
https://github.com/llvm/torch-mlir/pull/527 will bring this back with
a better design.
- Change ConvertAtenCatOp to use more accurate tensor shape info and
as much static info as possible to pass `tensor.insert_slice`
verification code added by https://reviews.llvm.org/D114715
- Other minor fixes
2022-01-18 13:25:42 -05:00
Anup Gangwar d69d29b7a6 * [tosa] Support for AtenPowTensorScalarOp with constant Scalar as input
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
2022-01-11 22:55:54 -05:00
Liam Fitzpatrick 077e55d756 Add support for constant_pad_nd
Note that to enable folding of the code coming from an example
like the ConstantPad2dStaticModule e2e test, support for other
operations had to be added/improved:
- aten::neg.int
- aten::eq.float
- aten::eq.str
- prim::Uninitialized
2022-01-11 10:25:25 -05:00
Vivek Khandelwal 35cf8d18f7 Add support for two return values
This commit adds support for two return values of type
memref f32 and i64.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-01-11 11:07:10 +05:30
Yi Zhang 732a76f45c Make broadcasting result shape more static
This involes the following 2 parts:
- Change refine type to propagate more static shape info.
- Get as much static shape info as possible when creating the result
tensor when converting to linalg.
2022-01-06 18:39:27 -05:00
Liam Fitzpatrick ccfdfd1b80 Refine static shapes for conv2d and maxpool2d 2022-01-03 11:09:23 -06:00
Vivek Khandelwal 4486de5ef3 [MLIR][TORCH] Add E2E support for torch.arange op
This commit adds lowering of `aten.arange.start_step` op.
This commit decomposes `aten.arange` and `aten.arange.start` into
`aten.arange.start_step` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2021-12-27 22:45:48 +05:30
Gaurav Shukla a83004c806 [TORCH][MLIR] Fold trivial cases of `aten.to.dtype` and `aten.view` op
- It folds `aten.to.dtype` when the input tensor type and result type
  are exactly same.
- It folds `aten.view` when the rank of both the input tensor type and
  result type is unity.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-24 13:32:34 +05:30
xndcn 5eed562e19 add aten.sub.int/aten.mul.int lowering in TorchToStd 2021-12-17 10:35:15 -08:00
Anup Gangwar a6c3050dd0 * [tosa] Support for Maximum and Minimum
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
2021-12-15 11:58:19 -08:00
Prashant Kumar ab81f871e4 Add aten.tensor.int and aten.tensor.float op lowerings.
Add the required lowerings and correct test cases.
These op produce zero-d tensors and it was incorrectly mentioned in
refine types to produce 1d tensor of size 1.
2021-12-15 17:21:34 +05:30
Anup Gangwar cce490d71d
* [tosa] Support for Rsqrt legalization (#480)
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>

Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
2021-12-14 10:03:58 -08:00
Gaurav Shukla 5a47f92390 [TORCH][MLIR] Add E2E support for `aten.squeeze.dim` op
This commit adds lowering of `aten.squeeze.dim` op into
`linalg.TensorCollapseShape` op. Here, the dim(th) dimension of the
input tensor is not supposed to be dynamic.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-10 17:01:20 +05:30
Suraj Sudhir c9c9b68d1f [tosa] Add Torch reduction operators
- Supports variants with multiple dims, one dim, all dime
- Leverages legalize_common and legalize_utils code from
TensorFlow-TOSA work

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2021-12-03 09:01:48 -08:00
Daniel Garvey a52aded0b9
Add lowering for slice and selectInt (#398) 2021-12-02 22:09:21 -06:00
Gaurav Shukla 73b27b32dc [MLIR][TORCH] Add E2E support for `aten.squeeze` op
This commit adds lowering of `aten.Squeeze` op into
`linalg.TensorCollapseShape` op. The size 1 dynamic dimensions are not
handled as a part of this commit.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-11-30 23:00:28 +05:30
Yi Zhang 5d28549c2c Add folder for torch.aten.Int.Tensor
This is to fold the common pattern from Bert inference like:
```
%111 = torch.prim.NumToTensor.Scalar %110 : !torch.int ->
    !torch.vtensor<[],si64>
%112 = torch.aten.Int.Tensor %111 : !torch.vtensor<[],si64> ->
    !torch.int
```
2021-11-30 21:55:48 +05:30
dan 03fdf56f21 add aten.add.int lowering in TorchToStd 2021-11-29 13:22:50 -05:00
Yi Zhang 0fe70994e5 Add support for multiple return values
This change is to unblock the work of some backprop ops returning more
than one tensors. We will need to think of a more scalable approach
in the future if more flexible return types combinations are needed.
2021-11-16 21:07:45 -05:00
Suraj Sudhir 628a21bb13
[mlir][tosa] Refactor conversions to use templates (#416)
- Remove use of conversion construction macros
- Add mul and div op conversions
- Add corresponding tests

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2021-11-11 16:15:58 -08:00
Suraj Sudhir 1019ddf5a0 [tosa] Add structure for eltwise ops
Add a bunch of op legalizations.

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2021-11-11 11:03:24 -08:00
Yi Zhang 3bd9d2a4c7 Add e2e support for aten._softmax_backward_data.
Decompose aten._softmax_backward_data into aten math ops. Also decompose
`aten.size` to facilitate decomposing _softmax_backward_data.
2021-11-09 13:09:30 +05:30
Yi Zhang 05c4dd8e39 Add convertScalarToDtype helper.
This is to facilitate scalar type conversion in the TorchToLinalg. As
part of adding the helper, this PR also:
- Updated `AtenAddTensorOp`, `AtenSubTensorOp` to use the helpers to
support more type variants.
- Added e2e type promotion testing.
- Added i32 memref return/arg type to support e2e testing.
2021-11-08 17:50:52 -05:00
George Petterson f41958037a Add NumToTensor 2021-11-08 15:56:52 -05:00
Prateek Gupta 18e8806b14 [TORCH][MLIR] Add E2E support for aten::to.dtype.
This commit adds end to end support for AtenToDtypeOp from aten
to linalg.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2021-11-08 12:56:03 -05:00
Prashant Kumar fd505db2c6 Adding support for returning elemental types.
Support for returning elemental types. Previously, only
memref types as returning types was supported. All the hacky ways
to write tests which return elemental types should be taken care of.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-11-08 22:20:48 +05:30
Prashant Kumar 53b4275ef5 Add lowering of `aten.Int.Tensor` op.
The lowering of `aten.Int.Tensor` op has been added.
The changes has been made as a part of `convert-torch-to-linalg` pass.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-11-01 21:58:08 +05:30
Yi Zhang 752abc8d01 Add type promotion code to refine types.
The types have different levels of categories: where
complex > floating > integral > boolean (> means left hand
side has higher category).

The operands have different levels of priorities where:
dimensioned tensor > 0-dim tensor > scalar == wrapped 0-dim tensor.
This is represented by the `ResultTypeState.dimResult`,
`ResultTypeState.zeroResult` and `ResultTypeState..wrappedResult` in
the source code.

For operands of the same priorities, the result type should be the
highest categories with sufficient width to hold all operands.

By default, only the highest priority operands participate in the type
promotion logic. Lower priority operands participate if they are in
a higher category than any higher priority operands.

For example, <[],f32> (lower priority) and <[1], si64> tensor would
result in <[?],f32> tensor because floating > integeral. Another example
<[],f64> (lower priority) and <[1], f32> tensor would result in
<[?], f32> tensor because f32 and f64 are the same category.

The ScalarType enum definition, type promotion table, ResultTypeState
struct definition and some helpers are copied from
aten/src/ATen/native/TypeProperties.*
Other references:
- https://pytorch.org/docs/stable/tensor_attributes.html#type-promotion-doc
- https://github.com/pytorch/pytorch/issues/9515

Other minor changes:
1. Fix `visitExpandLikeOp` to consider cases where the given sizes list
size is larger than the input rank.
2. Add back the somehow deleted `torch.aten.softmax.int` tests in
decompose-complex-ops.mlir.
2021-10-29 11:17:39 -04:00
Sean Silva eb6996d557 Update llvm-project to 6f9c25167d16acff3ff8e4f54a8c14a2a175fc59
- Changes to dialect conversion that result in no-op materializations
  not being created.
2021-10-28 17:43:04 -07:00
Suraj Sudhir 7e4ef74774
[tosa] Add Torch.sigmoid fp32 to TOSA (#386)
* [tosa] Add Torch.sigmoid fp32 to TOSA

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2021-10-28 10:09:12 -07:00
Prashant Kumar 5009cbf55c Add lowering of aten.matmul op.
Lowering of `aten.matmul` op is added from torch to linalg dialect.
The different cases correspond to
https://pytorch.org/docs/stable/generated/torch.matmul.html.
TODO: Broadcasting in case of batch-matmul is yet to be taken care of.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-10-26 12:45:09 -04:00
Yi Zhang abfaf8c577 Add aten.ne.bool to make CI pass 2021-10-21 14:45:41 -04:00
Yi Zhang a459e09ab7 E2e support for aten.softmax.int and aten.embedding
- Added a DecomposeComplexOps pass to decompose complex torchOps.
- Refactored `visitAtenArgmaxOp` and `visitAtenAnyDimOp` to
`visitReductionAlongDimIntOp`.
- Moved some helper functions into
torch-mlir/Dialect/Torch/Utils/Utils.h to be shared by multiple files.
- Added support for f64 tensor as argument and return types.
2021-10-18 17:57:45 -04:00
Yi Zhang 0902438882 Update llvm-project to a54f4eae0e1d0ef5adccdcf9f6c2b518dc1101aa
This brings in https://reviews.llvm.org/D110797. PRs that are in
progress will need to use scripts provided by
https://llvm.discourse.group/t/psa-removed-arithmetic-ops-from-standard/4455.
2021-10-18 13:36:42 -04:00
Sean Silva 19e9fc4ef1 Bring some more order to the e2e error reporting situation.
- Move `run_pipeline_with_repro_report` to a more common place, and use it
  consistently
- Attach a `torch.debug_module_name` to the enclosing `builtin.module`
  op to allow for self-contained error reporting (not needing to pass
  the names around.
- Remove redundant error reporting in linalg_on_tensors_backend.py and
  tosa_backend.py (their respective backend abstract base classes now
  take care of the error reports themselves)
- Save off original value of sys.stderr, rather than always resetting to
  `sys.__stderr__`. This is just more hygienic, and allows nesting if
  desired.
2021-10-08 13:00:12 -07:00
Sean Silva 0c5c84d63d Add a basic TOSA E2E backend.
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```

The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.

Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
  the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
  `abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
2021-10-08 09:59:45 -07:00
Stephen Neuendorffer 00d42ccaee Add tool substitutions to support out-of-tree builds 2021-10-07 21:16:43 -07:00
dan 2e1498ad11 add i64 support to refbackend 2021-10-05 15:12:44 -04:00
Sean Silva 5b6902e31c Dual license the torch-mlir project.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.

The standard file comment is now:

```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```

See `LICENSE` in the project root for the terms of both licenses.
2021-10-01 10:46:08 -07:00
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva a99cbeeb7e Move TorchConversion dialect and TorchTo* into torch-mlir 2021-09-23 21:39:31 -07:00
Sean Silva 2213584c4f VerifyBackendContract -> VerifyLinalgOnTensorsBackendContract
This moves it into TorchConversion since it is only needed there.

This removes the Backend/ directory.
2021-09-23 21:39:31 -07:00
Yi Zhang 603e068e45 E2e implementation for `aten.cat`,`aten.gather`, `aten.bmm`
Also contains the following changes:
- Remove derefineOp canonicalizer because it's not safe.
- Support for optional tensor and list tensors in reduceOpVariant. This
only works for some special detected and easy to handle cases. For list,
it covers the case list is got from a `ListConstruct`. For optional, it
covers the case optional is constructed from a `DerefineOp`.
- Remove the `inferReturnTypes` for `FromBuiltinTensorOp` because it's
not safe to deduce types from the input. For example, a built-in tensor
of i8 could be converted to si8 or ui8. It's better to let the user
specify the return type explicitly.
2021-09-22 19:15:01 -04:00
Sean Silva 1a0b953ea7 Eliminate almost all mentions of IREE.
A few remain in examples/docs that will be naturally be updated in due
time.

This regresses the list support and the general direction of more widely
supported control flow, lists/dicts/globals that we were going for with
the TorchScript path. The idea is that we are deferring that work to
make torch-mlir a very clean standalone thing. We will reboot it,
probably using some of the tools of iree_pydm to make it simpler, and in
a more natural place (such as an iree-torch repo that depends on IREE and
torch-mlir to build a working PyTorch frontend solution for IREE -- it
was really weird that npcomp depended on IREE).
2021-09-22 16:06:38 -07:00
Sean Silva a25163fbfa Remove old RefBackend
It is superceded by the new one.
2021-09-22 15:33:28 -07:00
Sean Silva f9c48d0b89 Bring up new RefBackend.
`tools/torchscript_e2e_test.sh` is all green.

This needs a few passes I put into torch-mlir/lib/RefBackend (not to be
confused with `npcomp/lib/RefBackend`, which will soon be deleted).

For the sake of review, since this brings together a lot of things, I
split this into its own commit. I temporarily commented out some "list"
stuff that we are going to remove as part of the torch-mlir refocus.
2021-09-22 14:20:22 -07:00
Sean Silva 68fefe7e1f Remove NPCOMP_ENABLE_IREE CMake flag.
Our new dependency management solution relies:
- on the C++ side with the public iree-dialects project, which we
  include and are using as representative of some missing upstream
  ops (so we treat them "as if" they were upstream, with the hope of
  upstreaming them after some codevelopment has happened)
- on the Python side, with simple PYTHONPATH manipulation or installed
  Python packages. No CMake stuff required.
2021-09-17 09:27:49 -07:00
Sean Silva b6be96d722 [torch-mlir earthmoving (2/N)] Python code movement.
This moves the bulk of the Python code (including the Torch interop)
from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also
required reconciling a bunch of other Python-related stuff, like the
`torch` dialects.

As I did this, it was simpler to just remove all the old numpy/basicpy
stuff because we were going to delete it anyway and it was faster than
debugging an intermediate state that would only last O(days) anyway.

torch-mlir has two top-level python packages (built into the
`python_packages` directory):

- `torch_mlir_dialects`: `torch` dialect Python bindings (does not
  depend on PyTorch). This also involves building the aggregate CAPI for
  `torch-mlir`.
- `torch_mlir`: bindings to the part of the code that links against
  PyTorch (or C++ code that transitively does).

Additionally, there remain two more Python packages in npcomp (but
outside `torch-mlir`):

- `npcomp_torch`: Contains the e2e test framework and testing configs
  that plug into RefBackend and IREE.
- `npcomp_core`: Contains the low-level interfaces to RefBackend and
  IREE that `npcomp_torch` uses, along with its own
  `MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR
  python bindings. (all other functionality has been stripped out)

After all the basicpy/numpy deletions, the `npcomp` C++ code is now very
tiny. It basically just contains RefBackend and the `TorchConversion`
dialect/passes (e.g. `TorchToLinalg.cpp`).

Correspondingly, there are now 4 main testing targets paralleling the
Python layering (which is reflective of the deeper underlying dependency
structure)

- `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code.
- `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g.
  TorchScript import)
- `check-frontends-pytorch`: Checks the little code we have in
  `frontends/pytorch` -- mainly things related to the e2e framework
  itself.
- `check-npcomp`: Checks the pure MLIR C++ code inside npcomp.

There is a target `check-npcomp-all` that runs all of them.
The `torch-mlir/build_standalone.sh` script does a standalone build of
`torch-mlir`.

The e2e tests (`tools/torchscript_e2e_test.sh`) are working too.

The update_torch_ods script now lives in
`torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone
build.

This change also required a fix upstream related to cross-shlib Python
dependencies, so we also update llvm-project to
8dca953dd39c0cd8c80decbeb38753f58a4de580 to get
https://reviews.llvm.org/D109776 (no other fixes were needed for the
integrate, thankfully).

This completes most of the large source code changes. Next will be
bringing the CI/packaging/examples back to life.
2021-09-15 13:40:30 -07:00
Sean Silva 28a7738189 [torch-mlir earthmoving (1/N)] C/C++ code movement.
This creates the `external/torch-mlir` directory as an
LLVM_EXTERNAL_PROJECTS-compatible project (analogous to
`iree-dialects`) and completes movement/rename of all pure MLIR C/C++
compiler code into there. The next step will be to move all the Python
code / code that links/includes PyTorch C++ code (which currently lives
in `frontends/pytorch`) into a subdirectory here.

I call this "earthmoving" because it is mostly mechanical changes and
renames. As a quick summary (we can change this down the road easily)
- C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch`
- CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet`
- preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_`
- CMake `NPCOMPFoo -> TorchMLIRFoo`

The goal of this is to create a standalone project creating a center of
mass for entry into the MLIR ecosystem from PyTorch, suitable in scope
for eventual inclusion/ownership in PyTorch. The idea is that
`external/torch-mlir` will some day be pulled out into its own
repository, and then npcomp will simply pull it in as a submodule.

Layering-wise, what lives in `torch-mlir` lowers code from PyTorch
(currently TorchScript, but TorchFX or pytorch/xla-style tracing are
possible extensions) down to what we have been calling the "Torch
backend contract" which is cleaned up IR (inlining, simplifcation,
conversion to value tensors, ...) entirely in the `torch` dialect. This
is the branching off point for further lowering, of which npcomp takes
one opinion (outside `torch-mlir` of course!), namely the
`TorchConversion` dialect/transforms which lower to IR suitable for IREE
and other linalg-on-tensors based lower-level compilers.

Summary of changes:
- move `{include,lib,test}/Dialect/Torch` into `torch-mlir`
- move relevant parts of CAPI into `torch-mlir`.
- leave a few things related to the `torch-mlir` Python build commented
  out, which should be resolved in a subsequent change.
2021-09-10 21:44:37 -07:00
Sean Silva a7252f9a06 Add basic support for lists.
This plumbs through a vertical slice of support for lists.

The main chunk of new code here is AnnotateABIPass which captures the
program signature at the Torch backend contract layer, right before we
start `TorchConversion`. The `TorchConversion` lowering process is lossy
w.r.t. types, so it's necessary to do this for all targets in general.
Like using `!iree.list` directly, we use IREE's ABI annotation
representation for this, although there is nothing very IREE-specific
about it (see
https://github.com/google/iree/blob/main/docs/developers/design_docs/function_abi.md)

We change `ListLiteralModule_basic` to use `!torch.int` because IREE
doesn't support f64 yet (and we don't yet have a way for users to say
that they want `!torch.float` to lower as f32).

Recommended review order:
- AnnotateABIPass and tests
- Arg marshaling in npcomp_backend.py and `iree.py`
- Updates to `list_programs.py` / `xfail_sets.py`
- Moving DeleteDeadIREEListsPass to Backend/Common, so that backends
  that don't support lists can use it. RefBackend uses that pass, for
  example.
2021-09-09 20:48:55 -07:00
Yi Zhang 73d553e168 MT model compilation minor changes
This contains the following changes:
 - Fix optional knowledge propagation. The initial knowledge should
 always be NotNone for the operations we implemented.
 - Add Folder for `prim.dtype`
2021-09-09 19:02:48 -04:00
Sean Silva ed2afe43e7 Fix TorchToIREE lowering.
We needed to resize the list, not just reserve capacity.
2021-09-03 23:57:54 +00:00
Sean Silva 1dec561cfd Update llvm-project to 830c0b9023cd0cf91955900e0d96283e7a8c3711
- builder.getSymbolRefAttr is gone.
- OpAsmOpInterface's getAsmResultNames method needs explicit override
- a bunch of churn for builtin.func needing to be made explicit (and
  sometimes implicit?)
- operation printers no longer need to print the operation name
  themselves.
- snuck in beneficial trivial addition to TmpDeleteDeadIREEListsPass to
  test a particular upstream change e2e with my local patchset.
2021-09-03 14:16:38 -07:00
Yi Zhang 3b0e5910a8 Refine types continue.
This should cover all the ops that are left in MT.
2021-09-02 14:39:28 -04:00
Sean Silva 29e1b2fe89 Delete RestrictedCanonicalizer
It doesn't work properly with the new dialect registration framework.
This was latent and only was exposed when running through npcomp-opt.
Not worth investing the brainpower to fix now.
2021-08-27 19:09:29 +00:00
Yi Zhang d6b9709fa5 Changes to refine types
- Add `!torch.optional` knowledge tracking
- Changes to improve type propagation for branches and terminators. See
examples in `refine-types-branch.mlir`
- Refator to separate handling of different ops from `visitOperation`
- Add refine types for a few new ops
2021-08-27 11:42:00 -04:00
Yi Zhang bc5eae41ca Add more folders to fold away branches
Added folders to a few binary computing ops, `TupleUnpack`,
`__contains__.str` and `__getitem__.Dict_str`.
2021-08-26 17:37:49 -04:00
Stella Laurenzo 4148f88576 Merge npcomp and mlir python namespaces.
* Now the parts of the MLIR API are directly exported under the npcomp module (i.e. `npcomp.ir`, etc).
* Has required fixes for https://reviews.llvm.org/D108489
* Deletes npcomp.tracing vs fixing it because it was a very early experiment that will not be carried forward.
* This makes the npcomp python distribution completely standalone and separate from an mlir installation.
* Makes most of npcomp itself relocatable for future use as a library.
* Most things are a namespace package now. In the future we can s/torch_mlir/npcomp.frontends.torch/ and have it layer properly.
2021-08-22 21:00:42 -07:00
Sean Silva cab8d922ec Add TorchToIREE and factor out TorchConversion dialect.
This converts a basic list op (torch.prim.ListConstruct) to the IREE
dialect.

```
    def forward(self, x: float):
            return [x, x]
```

turns into:

```
builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> {
  %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float>
  return %0 : !torch.list<!torch.float>
}
```

which turns into:

```
builtin.func @forward(%arg0: f64) -> !iree.list<f64> {
  %c1 = constant 1 : index
  %c0 = constant 0 : index
  %c2 = constant 2 : index
  %0 = iree.list.create %c2 : !iree.list<f64>
  iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64
  iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64
  return %0 : !iree.list<f64>
}
```

As part of doing this, I realized that it was time to formalize the IR
form that we reach right before running TorchTo{Linalg,Std,...}. We now
call it the "Torch backend contract". We then lower the "Torch backend
contract" to the "npcomp backend contract", which involves the new
TorchConversion (`torch_c`) dialect, which holds ops that need to
operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE
list, etc.) and the `!torch` types.

This made more sense, as I realized that if I didn't factor out
`torch_c` then the Torch dialect would have a dependency on IREE
dialect (we previously didn't notice this was an issue because we only
depended on `builtin` types), which seemed wrong to me.

Recommended review order:
- TorchToIREE.cpp / `TorchToIREE/basic.mlir`
- Look at the new structure of createTorchScriptToNpcompBackendPipeline.
  It now lives in TorchConversion/Transforms/Passes.cpp and cleanly
  calls into `Torch::createTorchScriptToTorchBackendPipeline` for the
  frontend lowering to the Torch backend contract.
- Mechanical change extracting
  `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new
  TorchConversion dialect, and a few passes specific to the lowering
  from the Torch backend contract to the npcomp backend contract.
- Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that
  we convert lists as part of operand materialization, we need to use
  the original operands). Also added test for AtenMaxPool2dOp and fixed
  m_TorchConstantIntList.
- TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that
  are created as part of operand materialization for conv/max pool/avg pool ops
  in TorchToLinalg.
2021-08-16 15:01:58 -07:00
Yi Zhang 85ff8b692b Fix compilation errors from MT model
With the following changes the compilation can continue until
RefineTypes pass:

- Add operators without ODS into `torch_ods_gen.py`
- Add some new optional and list types in `TorchTypes.td`
- Add some folders for aten int type comparator ops
- Modify GlobalizeObjectGraph.cpp. For global slots that's not used,
dont check if an aliased value is stored in more than one of global
slots. This can work around a failure where the same tensor is stored
in multiple "version" slots which are not used.
2021-08-16 16:37:23 -04:00
Sean Silva a3bfd115ee Remove npcomp-iree-backend-lower-linkage pass.
This is no longer needed by IREE.
2021-08-09 15:28:02 -07:00
Yi Zhang 0342b73bf1 Add torch.aten.flatten.using_ints and aten.MaxPool2d linalg lowering
- torch.aten.flatten.using_ints to linalg lowering
- torch.aten.max_pool2d to linalg lowering
- Support torch.aten.conv2d for more flexible dilation and strides values
2021-08-04 12:00:43 -04:00
Sean Silva 496051163f Rename npcomp-run-mlir to refback-run
This better represents its limited scope. This was causing confusion --
people were feeding it higher level ops that require frontend lowering.
2021-08-03 18:24:24 -07:00
Sean Silva f168cacd6d Remove TCF and TCP.
These were legacy concepts that are now superceded by direct Torch to
linalg-on-tensors lowering. These were based on some very early thinking
related to the layering of frontends vs codegen, which is now obsolete
because:
- We expected a lot more centralization at the frontend (TCF) level. It
  turns out that frontend needs really vary a lot, and there is no grand
  unifying TCF dialect plausible. The additional layer isn't worth it.
- Linalg-on-tensors obsoletes the primary need for TCP. There are still
  a few things not representable with linalg-on-tensors, but the support
  is growing and the whole "not included in linalg-on-tensors" direction
  needs to be rethought. Our TCP dialect didn't cover any of the
  actually important things in this space (such as sort, FFT, top-k,
  etc.).

See historical [slides](https://drive.google.com/file/d/1iljcpTQ5NPaMfGpoPDFml1XkYxjK_6A4/view) / [recording](https://drive.google.com/file/d/1jSPa8TwPKUt0WuLquGc8OgSUVYJHMvWZ/view)
for more details on the origin story here.

Their presence was confusing users too
[bug](https://github.com/llvm/mlir-npcomp/issues/248).

Also,
- Trim down npcomp-run-mlir testing. It was testing TCF to TCP
  lowering for the most part. The essential stuff is retained and
  rephrased with linalg-on-tensors. (we should probably rename it
  "refback-run" or something, as it is just a way to invoke RefBackend)
- test/Python/Backend/RefJIT/simple_invoke_numpy.py is XFAIL'ed. Our
  "anti-framework" direction seems to be the likely future path.
2021-08-02 12:08:39 -07:00
Stella Laurenzo 445472c51e Build packages for npcomp-torch.
* Adds a minimal setup.py for frontends/pytorch
* Makes npcomp-core export its headers and libraries
* Adds a script to build packages.
* Adds CI step to package and smoke test.
* Will need some more tweaks and coordination prior to deploying (version locking etc).
2021-07-29 19:58:59 -07:00
Stella Laurenzo cd44a35177
Bump llvm-project to 5b2e7f50a6798fd9b9c79d9d62fdebcd9e78525b. (#260) 2021-07-29 12:26:54 -07:00
Stella Laurenzo 2dbab50444
Rework the python build to a static assembly of MLIR+NPCOMP (#251)
* Adapt to python build system updates.

* Bump llvm to 310c9496d80961188e8d8f8ad306cdf44bd7541f (includes python build updates)
* Adds refback C-API.
* Re-layers all python builds.
* Rework CI.
2021-07-27 16:10:10 -07:00
Stella Laurenzo 2ecbcbf8c7
Bump llvm-project to a085c23aa3c8f91866d7f4588d4f683407dc775d. (#250)
* Added additional *ToLLVM conversion patterns (they were disaggregated from standard).
* Misc renames.
* Spelling change on ConvNCHW op, and it now expects strides and dilations attributes.
2021-07-23 14:13:19 -07:00
Sean Silva 83b5b5456d Bump llvm-project to da289a174fc6617c7be37be2947480510fd4f02a
- Build adjustments for `.cpp.inc` dialect files.
- Renaming of `memref.dim` to `tensor.dim` for tensor case.

Minor changes:
- Renaming of `mlir::linalg::ReassociationIndices` to
  `mlir::ReassociationIndices`.
- Adjust command line option parsing in npcomp-run-mlir.
2021-07-07 13:57:29 -07:00
Sean Silva 79928cd2dd Generalize support for elementwise ops.
We plumb through e2e a fair number of interesting cases:
- unary, binary, ternary elementwise ops
- ops like `torch.aten.add.Tensor` that also take a scalar parameter
- static size-1 broadcasting

We allow the static size-1 broadcasting case, but emit a runtime error
in the case of dynamic size-1 broadcasting. This seems like a sweet spot
subset of things that can be lowered directly to linalg, while not being
overly constraining to users. This is consistent with what IREE is doing
for CHLO->Linalg lowering as well
([code](50bf7a87e4/iree/compiler/InputConversion/MHLO/BroadcastingToLinalgPatterns.cpp (L1))).

To test the static size-1 case, we added support for the
`torch.aten.unsqueeze` op and lowering for it through
`linalg.tensor_expand_shape`. This involved a generalization of
`MaximizeValueSemantics` able to handle it (the solution there also
works for `torch.aten.flatten.using_ints` which we need for ResNet
anyway)

Also, a few minor additional changes:
- Add `VerifyInvariantsBeforeBackendLowering` pass, which catches a
  large class of errors before we get to backend lowering (now that we
  are doing dialect conversion, the errors are way nicer if we just emit
  them up front rather than in the guts of a random pattern).
- Minor change to RefBackend to allow `linalg.tensor_expand_shape`.

Recommended review order:
- e2e tests in elementwise.py
- `ConvertElementwiseOp` in TorchToLinalg.cpp + elementwise.mlir test
- `ConvertAtenUnsqueezeOp` in TorchToLinalg.cpp + unsqueeze.mlir test
- RefineTypes.cpp + tests
- MaximizeValueSemantics changes + test
- VerifyInvariantsBeforeBackendLowering pass + test
2021-06-28 13:28:38 -07:00
Sean Silva 145d4ae23c Bump llvm-project to a37cf17834d39411ed1d669098b428f8374c5b45
Changes:
- Change to operand ordering of `linalg.fill`.
2021-06-23 10:03:29 -07:00
Sean Silva 90c6c64fd6 Make torch.constant.float print a little nicer.
This printing is chosen to be similar to how MLIR prints the values by
default.
2021-06-23 08:07:45 -07:00
Sean Silva 60a947b4a7 Add CastOpInterface to torch.prim.unchecked_cast.
This allows it to fold away in trivial cases.
2021-06-23 08:07:45 -07:00
Yi Zhang 45f2edfc7a Add TorchToSCF pass.
1. Add TorchToSCF pass.
2. Convert prim.If and prim.If.yield.
2021-06-23 08:06:43 -07:00
Yi Zhang 5ad144c4fe More folding for aten.gt.int, aten.ne.int and Aten__Getitem__TOp.
- Fold more for aten.gt.int, aten.ne.int and Aten__Getitem__TOp
- Some format cleaning up
2021-06-23 08:06:37 -07:00
Sean Silva 79aade33da Make MaximizeValueSemantics a bit smarter.
This adds a pattern to MaximizeValueSemantics which does a simple
abstract interpretation within a block, which handles simple cases of
`torch.overwrite_tensor`, enough to remove all the unnecessary uses of
non-value tensors in ResNet right now.

Before/after IR:
[gist](https://gist.github.com/silvasean/a3e1ef625b19dfc63579f73cd3b543b6)

Also,
- Split `torch.copy.tensor` into `torch.copy.to_tensor` and
  `torch.copy.to_vtensor` which convert between value and non-value
  semantic tensors. This is a much cleaner factorization as they have
  very separate use cases and properties (e.g. different side effects)
- Remove the various canonicalization patterns they had, which were
  confusing because they resulted in limited forms of maximizing value
  semantics throughout the pipeline. We should structure our compilation
  pipeline such that only MaximizeValueSemantics should be maximizing
  value semantics.
- Adjust pass pipeline to only run MaximizeValueSemantics once.
- Make OverwriteTensorOp `$value` always be a value tensor and
  `$overwritten` be a non-value tensor.
2021-06-22 16:48:57 -07:00