All e2e iree tests compiled, but they have the run issue of mismatch of
dtype like the following
```
expected:
1x1x2x2xsi32=[[[12 16][24 28]]]
actual:
1x1x2x2xi32=[[[12 16][24 28]]]
```
This commit also cleans up the OnnxToTorch lowering for the Squeeze and
Unsqueeze op and adds the support for handling edge cases.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Previous implementation erroneously mixed up num_outputs with
slice_size. New version correctly computs the slice size and directly
performs slicing rather than leveraging `aten.split.tensor`. This is due
to `onnx` supporting a fixed number of splits making the size
computation more easily computeable when lowering to `aten` rather than
deferring to `aten.split.tensor`.
---------
Co-authored-by: Robert Suderman <rsuderman@Roberts-MacBook-Pro.local>
We can map to `tensor.reshape` for handling multiple output dynamic
shapes. Later we can perform a more complex analysis for indentifying
expand/collapse cases from the tensor.reshape.
Initially we planned to handle this identification at the `torch` level
however it will be easier to handle once converted to core
mlir-dialects.
Align corner modes which select what the corners mean.
Either the center of the corner points or the edges of the edge points.
---------
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
1. onnx.MatMulInteger now converts to aten.matmul instead of aten.mm
2. aten.matmul, for ranks >=2, now allows quantized inputs and will
lower to linalg::quantized_matmul or linalg::quantized_batch_matmul.
3. added AtenMatmulOp to the FuseQuantizeOps rewrite patters
QuantizeOperands, QuantizeTransposedOperands, and QuantizeAccumulator
4. added several tests, including some to test AtenMmOp with varying
quantization signed-ness.
5. a quantized matmul mat-vec test is added to verify the failure to
lower to linalg; cleaned of out-of-date code related to common
torch-mlir lowering xfails.
6. in debugging a real model with quantized matmuls, I found a bug on
the scalarize-shapes pass which resulted from the aten.full op folder
returning an incompatible result type. This is fixed by the small change
here to
[lib/Dialect/Torch/IR/TorchOps.cpp](https://github.com/llvm/torch-mlir/compare/main...zjgarvey:torch-mlir:MatMulIntegerFix?expand=1#diff-dc8ed165c207918e606490eee3984b1ad51d7034e6aac36fc046bf47f6f03f4f).
…ute_reshape_shape
as that `aten.view` support at most one `-1` in dim list. The original
calculation of `numel` is wrong when there is a `-1` in dim list.
This PR only performs a lit test. In lieu of an e2e test, https://github.com/nod-ai/SHARK-TestSuite/pull/142 makede sure that the lowering works & the numbers check out.
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
This commit also cleans up the OnnxToTorch lowering for the ReduceMean
op and adds the support for handling edge cases.
Signed-Off By: Vivek Khandelwal vivekkhandelwal1424@gmail.com
The `convertTensorToElementType` function expects it's argument to have
a valid tensor type that is not `Torch::NoneType`. This PR checks that
the bias tensor is not of type `Torch::NoneType` before calling
`convertTensorToElementType` on the bias tensor argument in the
`matchAndRewrite` member function of the `ConvertAtenConvolutionOp`
class.
Now there no lowing for `aten.Int.bool` in `convert-torch-to-arith`
pass. this PR add this support.
Below is the UT.
```
func.func @torch.aten.Int.bool(%arg0: !torch.bool) -> !torch.int {
%0 = torch.aten.Int.bool %arg0 : !torch.bool -> !torch.int
return %0 : !torch.int
}
```
This commit adds the OnnxToTorch lowering for the Mish, Softplus,
HardSwish, Trilu, ThresholdedRelu op
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This adds support for converting DynamicQuantizeLinear from torch-onnx
to torch.
I could not get an e2e test to pass, since there seems to be some issues
with uint8 casting somewhere lower in the pipeline. For example
compiling with IREE for llvm-cpu, I would get either the correct zero
point (if zp < 128) or the correct zero-point minus 256 (if zp >= 128).
The output tensor seems to always return a tensor of zeros, which also
occurs when running uint8 examples through QuantizeLinear.
Edit: the first problem can be resolved by casting the output back to
uint8 on output, the second problem is resolved with PR #3018
Reduce mean lowerings did not succesfully lower to `linalg` via torched.
There were two separate paths that could be consolidated to a single
simpler pass. This resulted in a significant improvement in test
coverage.
If the broadcast shape is length-1 at a dim while `?` in the input dim
then we need to broadcast to the dynamic dim. This is equivalent to
taking a max of two dimensions.
This folds small version of the tensor-scalar comparison operators as
they are commonly used for shape computations. This includes le, lt, ge,
gt, eq, and ne.
The current padding operation was not functional for dynamic shapes.
Updated and enabled tests so that onnx.pad tests pass.
Work TBD for reflection padding.
We can support `onnx.Size` by requesing the size of each dimensions and
taking the product of the results, then packing it into a tensor.
---------
Co-authored-by: Scott Todd <scott.todd0@gmail.com>
This mostly copy-pastes the reduce minimum implementation to reduce max
to improve test coverage. We also improve the aten lowering for min/max
dim for unsigned types.
The addition of an e2e test is actually provided in the Shark-Testsuite.
This adds 2 test cases for the gridsampler e2e test.
Also as intended there were some items found which needed correction, so
the Gridsampler op has also a change.
`getRawBuffer` expects a densely packed vector of `i1` values however
`onnx` does not densely pack the values. Include code to handle the
packing / unpacking.
This is the lowering of gridsampler from onnx to torch using our prior
implementation of AtenGridSamplerOp.
Here are several checks for cornercases implemented. We may decide to
have part of these checks in AtenGridSamplerOp instead of the onnx
lowering portion.
Torch lowering only supported the most recent version. Refactored the
lowering so more easily handle default values and optional operands /
attributes.
There is no reason to treat `ConstantOfShape` as a specialized import
any as there exists a onnx-to-torch equivalent. Dropping the import
coding and adding support for resource conversion substantially
increases test coverage for dynamically shaped tests.
According to the [official TOSA
spec](https://www.mlplatform.org/tosa/tosa_spec.html#_cast), `tosa.cast`
allows a cast from `fp32` to `fp16`. We were not previously accounting
for this in the `TorchToTosa` lowering.
Also did a tiny bit of cleanup in the code to make it easier to spot
which conversions are currently allowed.
---------
Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>