Commit Graph

566 Commits (4f173c6e0f1ea35ccee07970f514f9da90e7db8b)

Author SHA1 Message Date
Xiafei Qiu 4f173c6e0f
update llvm tag to a2620e00. (#1567)
- also update MHLO to 57ba12a2(branch greencommit/2022-11-07-a2620e00)
- change -pass-pipeline format to make tests pass.
2022-11-10 18:39:28 +08:00
Sean Silva 64914603fa [torch_mlir.compile] Add support for multiple exported methods
For AoT deployments models often have multiple exported methods.
This patch enables something like this:

```
class TwoMethodsModule(torch.nn.Module):
    def sin(self, x):
        return torch.ops.aten.sin(x)

    def cos(self, x):
        return torch.ops.aten.cos(x)

example_args = torch_mlir.ExampleArgs()
example_args.add_method("sin", torch.ones(2, 3))
example_args.add_method("cos", torch.ones(2, 4))
print(torch_mlir.compile(TwoMethodsModule(), example_args))
```

In the
[long-term](https://github.com/llvm/torch-mlir/blob/main/docs/long_term_roadmap.md#tools-for-advanced-aot-deployments)
we will need to reconcile this with our story for stateful models and the
backend contract being purely functional. For now, this provides some basic
infra that seems harmless. Arguably, we could tighten up the backend contract
even more to only allow a single compiled function which would prohibit this or
require building out a layer above.

Fixes #1557
2022-11-10 02:10:22 -08:00
Jae Hoon (Antonio) Kim 2ec4b06bbb
Remove MakeView from IR Builder (#1552)
* Remove MakeView from IR Builder

* Update PyTorch requirements
2022-11-09 13:46:34 -05:00
Ashay Rane d99b2ddb1b
importer: fix usage after PyTorch update (#1555)
Unless requested otherwise, PyTorch no longer installs most of the
header files under the caffe2 directory (see
https://github.com/pytorch/pytorch/pull/87986).  This breaks our
importer code since we need to use the `MakeGuard()` function to execute
statements in the event of exceptions.

To fix this issue, this patch implements a rudimentary version of
PyTorch's ScopeGuard, where once the class variable goes out of scope,
it executes a predefined method.
2022-11-04 15:02:23 -05:00
Vivek Khandelwal fedf8c0640 [MLIR][TORCH] Add E2E support for aten.upsample_nearest2d_backward.vec op
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-04 22:10:07 +05:30
Jae Hoon (Antonio) Kim 0701464c47
Remove view ops from IR builder (#1534)
* Remove view ops from IR builder

* Update PyTorch requirements
2022-10-30 21:42:44 -04:00
Vivek Khandelwal c86177730d [MLIR][TORCH] Add E2E support for aten.fill.Tensor op
This commit adds the decomposition for `aten.fill.Tensor` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-10-30 18:40:47 +05:30
Ramiro Leal-Cavazos b723186983
Remove all but one of valsem ops + move fill.Scalar to elementwise (#1531)
This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
2022-10-28 15:06:11 +00:00
Vivek Khandelwal ea602127b6 [MLIR][TORCH] Add E2E support for aten.addcmul_ and aten.addcdiv_ op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-10-28 16:07:50 +05:30
Daniel Ellis 3e199aaf11
Add better error message for single-tensor tuple returns. 2022-10-25 12:48:55 -04:00
Vivek Khandelwal ca87033d2f [MLIR][TORCH] Add E2E support for aten.mse_loss op
This commit adds decomposition for the `aten.mse_loss` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-10-25 21:06:58 +05:30
Jae Hoon (Antonio) Kim 2f300935bf
Reference lazy graph executor (#1507)
* Add LazyGraphExecutor registration

* Update PyTorch version to 1.14.0.dev20221024

Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
2022-10-24 17:15:11 -04:00
Chi_Liu ad6f5848cb
[MLIR][TORCH] Add TorchToTosa lowering for aten.where.self op (#1454) 2022-10-18 09:39:39 -07:00
Ashay Rane a9942f343a
Cache PyTorch source builds to reduce CI time (#1500)
* ci: cache PyTorch source builds

This patch reduces the time spent in regular CI builds by caching
PyTorch source builds.  Specifically, this patch:

1. Makes CI lookup the cache entry for the PyTorch commit hash in
   pytorch-version.txt
2. If lookup was successful, CI fetches the previously-generated WHL
   file into the build_tools/python/wheelhouse directory
3. CI sets the `TM_PYTORCH_INSTALL_WITHOUT_REBUILD` variable to `true`
4. The build_libtorch.sh script then uses the downloaded WHL file
   instead of rebuilding PyTorch

* ci: warm up PyTorch source cache during daily RollPyTorch action

This patch makes the RollPyTorch action write the updated WHL file to
the cache, so that it can be later retrieved by CI that runs for each
PR.  We deliberately add the caching step to the end of the action since
the RollPyTorch action never needs to read from the cache, although
executing this step earlier in the process should not cause problems
either.
2022-10-18 00:42:42 -05:00
Ramiro Leal-Cavazos 82a3860e25
build: update llvm tag to 4546397e (#1502)
This commit makes the following changes needed to update bump LLVM:

- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)

Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>

Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
2022-10-18 04:22:53 +00:00
Ramiro Leal-Cavazos 86095dd432
Replace linear transformation with `low` and `high` in test inputs (#1485)
This commit replaces test inputs that were being linearly transformed
by multiplying and adding/subtracting to the input tensor with inputs
that use the `low` and `high` keyword arguments instead.
2022-10-14 18:52:07 +00:00
Gleb Kazantaev bdb5083d33
New ops support & enhancements (#1494)
* New ops support & enhancements

* Enabled xfail ltc tests
2022-10-14 10:28:21 -04:00
Prashant Kumar 3a2cd23380 [LINALG] Add lowering for aten::round op.
-- Added the lowering for aten::round op.
-- Added the folding for integer cases.
2022-10-13 02:41:26 +05:30
Sean Silva c8280d67bd Remove the heavydep tests
We originally added these to help bring up more complex models with
heavier dependencies. However, over time it has become clear that these
models usually require more than just heavier dependencies -- they often
require a nontrivial amount of "one-off" code to extract the relevant
parts of the model and compile them. This is not a good fit for a
component in the core Torch-MLIR repo.

However, in the community, nod.ai has developed the ["Shark
Tank"](https://github.com/nod-ai/SHARK/tree/main/tank) which has all the
appropriate code to wrangle these models and organize them. We intend to
more heaviliy lean on that as a community and improve the symbiosis
there to serve the role that these heavydep tests were meant to play.
2022-10-12 05:19:36 -07:00
Sean Silva 6403c0e56f torch_mlir.compile: allow custom backend_legal_ops set
Allow customizing `backend_legal_ops` for "torch" output type, since we
don't know which backend will be used (it might be a custom backend).
We don't allow customizing the `backend_legal_ops` for the other output
types (Linalg, TOSA, MHLO) since those backends control their set of
legal ops directly.

Fixes #1418
2022-10-12 04:21:22 -07:00
Abhishek Varma 61db1b5c4d
[MLIR][TORCH] Add e2e support for `aten.Mish` op (#1470)
-- This commit adds e2e support for `aten.Mish` op.
-- `aten.Mish` op is decomposed as following :-
    Mish(x) = x * Tanh(Softplus(x))

Signed-off-by: Abhishek Varma <avarma094@gmail.com>

Signed-off-by: Abhishek Varma <avarma094@gmail.com>
2022-10-11 14:03:10 -07:00
Jae Hoon (Antonio) Kim 3e08f5a779
Fix `fromIntArrayRef` call (#1479)
* Fix fromSymint call

* Update PyTorch requirement

* Re-enable LTC
2022-10-11 13:29:07 -04:00
Ashay Rane aefbf65e27
Disable LTC and update PyTorch (#1472)
* build: disable LTC again so that we can bump PyTorch version

When built using PyTorch's master branch, the LTC code has been failing
to build for a few days.  As a result, the PyTorch version referenced by
Torch-MLIR is stalled to the one from October 4th.

In an effort to advance to PyTorch version, this patch disables LTC, and
a subsequent patch will advance the PyTorch version.

* update PyTorch version to 1.14.0.dev20221010

Also disables the `UpSampleNearest2dDynamicFactor_basic` e2e test, since
the (PyTorch) oracle differs from the computed value for both the
refbackend and the eager_mode backends.
2022-10-10 23:05:40 -05:00
Gaurav Shukla da90a25f90 [MLIR][TORCH] Add E2E support for `aten.[div.int|bitwise_or.Tensor]` ops
This commit adds lowering of `aten.div.int` and `aten.bitwise_or.Tensor`
ops. Both these ops are required in order to support bloom_560m model.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-10-10 22:28:51 +05:30
Vivek Khandelwal d3cc3f1aff [tosa] Add lowering for aten.to.dtype and aten._to_copy op
This commit adds the TorchToTosa lowering for `aten.to.dtype` and
`aten._to_copy` op.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-10-06 12:00:25 +05:30
Daniel Ellis e7b2b84a66 Update torch-mlir-opt error message. 2022-10-05 15:02:10 -04:00
Jae Hoon (Antonio) Kim c57d801260
Fix functionalize_aten_op calls for symint ops (#1459)
* Fix functionalize_aten_op calls for symint ops

* Update PyTorch version
2022-10-05 10:23:48 -04:00
Gleb Kazantaev 708fa346a6
Fix Base Lazy Backend Type Conversion (#1412)
* Fix c10::prim::Constant conversion; Added CAPI for passes; Added passes to base lazy backend

* Update ivalue_importer to use ImportOptions; Added tests for non-value/value tensor types

* Added tests for scalar Constant import; Updated MB::importFunction to use ImportOptions

* Test updates

* Move back module variable name

* Remove RefineTypes from TorchMlirLoweringContext::Build()

* Rename pass; Remove passes from base lazy backend

* Rename pass to VerifyBackendContractPass

* Aligned cmd pass name; Fixed TorchConversion passes registration
2022-10-04 15:53:28 -07:00
Daniel Ellis 2ba71af651 Add support for mv decomposition. 2022-10-04 11:34:45 -04:00
Prashant Kumar 6777a9484d [LINALG] Add lowering for the aten.upsample_nearest2d op. 2022-10-04 17:20:29 +05:30
Daniel Ellis 4d47f1671a Reject dictionary inputs when tracing.
The underlying error message was misleading.  See https://github.com/llvm/torch-mlir/issues/1425
2022-09-30 16:02:35 -04:00
AmosLewis 940959589b [MLIR][TORCH] Add Byte and Char Dtype support 2022-09-30 13:19:31 +05:30
Ashay Rane 0b46462528
Miscellaneous fixes for Windows builds (#1376)
* test: allow spaces in path to Python executable

On Windows, the path to the Python binary may contain spaces, so this
patch adds quotes around the path to the python executable.

Thanks to @sstamenova for suggesting the fix!

* python: remove header file that causes Windows build failures

Similar to https://reviews.llvm.org/D125284, we can safely remove this
header file without affecting the build on either Linux.  It is
necessary to remove this header file on Windows builds since otherwise
it causes build errors.

* python: drop `TORCH_API` from function defined in Torch-MLIR

`TORCH_API` should apply to functions that are either exported by
libtorch.so or ones that are imported from libtorch.so by its downstream
consumers (like Torch-MLIR).  Neither case applies to the
`importJitFunctionAsFuncOp()` function, since it is defined in
Torch-MLIR (and thus outside libtorch.so).  This patch fixes the problem
by dropping `TORCH_API` from that function's declaration.

* python: make output of class anotations deterministic

The `class-annotator-repr.py` test checks for class annotations in a
specific order, but prior to this patch, the order was
non-deterministic, since the code iterated on an _unordered_ map.

This patch makes the iteration order deterministic through two changes:
1. using a sorted map
2. using the class qualified name instead of the address of the class in
memory

* test: use Python3_EXECUTABLE as interpreter path for consistency

This ensures that tests use the Python3 version that was detected using
CMake, instead of whichever python version that happens to be in the
PATH variable when invoking the test.

* test: fix RUN string

The parenthesis syntax does not run on Windows (the shell interprets the
`(` character as part of the path).  Moreover, the ODR violation in the
comment no longer seems to apply.

* python: port parallel test framework to Windows

Since Windows does not support `fork` natively, Python's
`multiprocessing` module needs to use `spawn` on Windows.  However, to
use `spawn`, the multiprocessing module serializes (or pickles) the
worker function and its arguments.  Sadly, the multiprocessing module
(both the default one in Python and the one that is extended in PyTorch)
is unable to serialize lambda functions (see
https://stackoverflow.com/a/19985580) for detals.

Unfortunately, given how our tests are structured, we require that the
function under test is passed as an argument to another function, so we
cannot sidestep our use of lambda functions.

To resolve this problem, this patch makes use of the `multiprocess` and
`dill` Python modules, which together offers a multiprocessing mechanism
that can serialize lambda functions.  The multiprocess module also
offers a process pool, which simplifies the code for our parallel
testing framework.
2022-09-29 12:07:43 -05:00
Vivek Khandelwal 6db513c51d
[tosa] Add support for some cases of aten.broadcast_to op (#1429)
This commit adds support for TorchToTosa lowering of
`aten.broadcast_to` op for cases:
1.) When the rank of input and output tensor is equal.
2.) When the rank of input tensor is zero.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-09-29 09:40:56 -07:00
Jae Hoon (Antonio) Kim fa5a8e21a3
Propagate parameter names to TorchMlirComputation (#1420)
* Propagate parameter name to MLIR

* Add TorchMlirNode Constructor Hook

* Make func_op mutable

- Purpose of this is to allow modification of func_op by subclass
  backend

* Clean up unnecessary changes

* Remove unnecessary attribute case

* Address PR comments
2022-09-29 11:43:39 -04:00
JakopinA 8ef0c874c2
Implement Expand/Collapse Functionality for Aten.View (#1353) 2022-09-27 11:08:14 -07:00
武家伟 c03aa63325
[MLIR] Add canonicalizer for aten.slice.t op (#1413)
* [MLIR] Add canonicalizer for aten.slice.t op

* Add mlir tests and strength the canonicalizer

* rename variable

Co-authored-by: Vremold <xremold@gamil.com>
2022-09-26 14:35:50 -07:00
Jae Hoon (Antonio) Kim 3e27aa2be3
Fix as_strided/slice symint (#1401)
* Fix as_strided symint

* Re-enable LTC tests

* Re-enable LTC

* Add hardtanh shape inference function

* Fix slice symint
2022-09-26 12:16:49 -04:00
武家伟 ab7aa01b1e
[MHLO] Add torch-to-mhlo e2e support for aten.gather op (#1410)
* Add torch-to-mhlo e2e support for aten.gather op 

* Add more e2e tests for torch.aten.gather op
2022-09-25 22:07:46 +08:00
Vivek Khandelwal bc11e1aba6 [tosa] Add "-tosa-to-tensor" pass in the lowering pipeline
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-09-24 10:03:07 +05:30
Tanyo Kwok 72e422b589
Add relu6 and binary broadcasts (#1408)
* Add relu6 and binary broadcasts
2022-09-23 20:39:15 +08:00
Sean Silva 7a77f9fe3d Add a way to turn off crashing tests
This adds a very long and obnoxious option to disable crashing tests.
The right fix here is to use the right multiprocessing techniques to
ensure that segfaulting tests can be XFAILed like normal tests, but we
currently don't know how to implement "catch a segfault" in Python
(patches or even just ideas welcome).

Motivated by #1361, where we ended up removing two tests from *all*
backends due to a failure in one backend, which is undesirable.
2022-09-23 05:01:39 -07:00
Vivek Khandelwal 5090ac9359
[MLIR][TORCH] Add a test for sum.dim_IntList op working for tosa (#1387)
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>

Co-authored-by: Suraj Sudhir <16977902+sjarus@users.noreply.github.com>
2022-09-20 11:38:09 -07:00
Vivek Khandelwal 1ffd42bbde
[MLIR][TORCH] Add TorchToTosa lowering for aten.broadcast_to op (#1386)
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-09-20 10:04:51 -07:00
武家伟 0e2e94d542
Add torch-to-mhlo e2e support for AtenArangeStartStepOp (#1385)
Co-authored-by: Vremold <xremold@gamil.com>
2022-09-20 22:31:24 +08:00
Jae Hoon (Antonio) Kim 8967463980
Fix symint ops and blacklist `lift_fresh_copy` (#1373)
* Add symint to native functions yaml

* Re-enable LTC

* Fix new_empty_strided and narrow_copy
2022-09-20 10:16:04 -04:00
武家伟 4f3cd236dd
Strength the shape inference for aten.arange-like op (#1367)
Strength the shape inference for aten.arange-like op by
1. registering aten.sub and aten.ceil.Scalar op and design folders for them.
2. register a new constant-like op: Torch::ConstantNumberOp and design canonicalizer for it.
2022-09-20 12:40:19 +08:00
Vivek Khandelwal 04f3a4ffce [MLIR][TORCH] Add support for bool element type for aten.sum[.dim_IntList] op
This commit adds bool element type support for `aten.sum` and
`aten.sum.dim_IntList` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-09-17 09:18:34 +05:30
Ashay Rane 1895b581c4
shape-lib: generate string as multiple lines to work with MSVC (#1370)
As @oroppas identified, literal strings that are over 16,380 characters
cause the MSVC compiler to throw an error (C2026), eventually causing
the Windows build of Torch-MLIR to fail because the length of the
generated MLIR for the shape library crosses the allowed threshold.

This patch fixes the problem by making the Python script generate one
literal string per line to satisfy the MSVC compiler.

Thanks to @oroppas for the bulk of the effort required to resolve this!
2022-09-16 15:16:01 -05:00
Ashay Rane 2bb5f4d8fe
build: update llvm tag to 4d4ca6c9 (#1359)
Summary of changes:
 - Updated emitAccessorPrefix since the default value has changed
   (https://reviews.llvm.org/D133179)
 - Updated RefineTypes pass since Lattice::isUninitialized() is removed
   (https://reviews.llvm.org/D132800)
 - Updated MHLO tag so that it builds with the updated LLVM tag
 - Disabled two tests that cause segfaults in the TOSA backend (see Issue
   #1361)
2022-09-13 21:24:43 -05:00