Commit Graph

363 Commits (51d4d55f8aa7ef61724df48abae603df328df3e8)

Author SHA1 Message Date
Ramiro Leal-Cavazos 51d4d55f8a
Add support for multi-dim input to `index_put_impl` (#722)
This commit adds support for multi-dimensional tensors as input to the
`_index_put_impl_` op. The support was to some degree already there,
since `ScatterOp` already supports multi-dimensional tensors. This
commit also adds a bit more error checking to `index_put` and
refactors the code for creating `ScatterOp`s to mimic the way one
would make a `Linalg::GenericOp`.
2022-03-31 09:27:21 -07:00
Gaurav Shukla 969785d1b6 [LINALG] Add E2E support for `aten.where.[Scalar|ScalarSelf|ScalarOther]` ops
This commit decomposes different variants of `aten.where.*` op into
`aten.where.Self` op. It covers `aten.where.Scalar`,
`aten.where.ScalarSelf` and `aten.where.ScalarOther` ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-30 20:36:48 +05:30
Vivek Khandelwal 2597c481f6 [MLIR][TORCH] Add E2E support for aten.new_empty op
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.

This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-30 13:21:01 +05:30
Sean Silva 140babd952 Add minimal support for Union types.
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287

Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
  along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
  that derefines to a UnionType (this also fixes #664).

There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
2022-03-29 17:45:48 -07:00
Liam Fitzpatrick f2269ced80
Improve list index normalization SimplifyShapeCalculations. (#710)
The reified code to compute the shape of torch.aten.constant_pad_nd
uses negative indices when setting list elements. This was not
converted to a positive offset in one place in SimplifyShapeCalculations
which prevented computation of the static shape.
2022-03-29 22:21:47 +02:00
Maksim Levental 25ba51b2af
This commit decomposes aten._reshape_alias op into aten.view op. (#690) 2022-03-28 23:54:28 -05:00
Gaurav Shukla 02b6d04eb4 [LINALG] Add E2E support for `aten.zero_` op
This commit adds decomposition of `aten.zero_` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-25 12:46:50 +05:30
Gaurav Shukla 7c3ba25238 [LINALG] Add decomposition of `aten.dropout` op
- This commit adds decomposition of `aten.dropout` op. It also covers the
  training mode of the same op.
- It also adds lowering of `aten.sub.float` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-22 13:14:49 +05:30
Sean Silva 729402c3f4 Reduce compilation time for TorchOps.cpp.inc
The `assemblyFormat` stuff (which generates unrolled, per-op C++ code)
was taking up a lot of compile time, and all the ops are essentially
printed with the same logic. So this PR makes them all call the same
helper function. This is done by using
`let hasCustomAssemblyFormat = 1` and then implementing `FooOp::parse`
and `FooOp::print`.

Additionally, the `Generated*Ops.td` files are all collapsed into just
`GeneratedTorchOps.td` (there is no reason to have the files separate,
since the files are very large anyway so one is always having to search
within them -- editors don't care that the file to search is now a bit
bigger :) ).

This reduces TorchOpsODSGenerated.cpp compile time (which is now
GeneratedTorchOps.cpp) from 39 to 31 seconds on my machine. This is
actually less than I expected, but this PR is an overall cleanup to the
code anyway. The next step will be to introduce (better) functionality
upstream for sharding the TorchOps.cpp.inc file, so that we can truly
parallelize the O(#ops) costs. This is also necessary, because after
this PR, TorchDialect.cpp is now the slowest file to compile, due to the
`addOperations<... all the ops ...>` call, which needs to be shareded
too.
2022-03-21 14:42:26 -07:00
Vivek Khandelwal 5b9bdfaf3f [MLIR][TORCH] Add E2E support for aten._to_copy op
This commit decomposes `aten._to_copy` op into
`valsem.aten.copy` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 19:12:37 +05:30
Vivek Khandelwal 13383b03b8 [MLIR][TORCH] Add value tensor variant to aten::copy_ op
This commit adds the op `ValsemVariantAtenCopyOp` that represents
`AtenCopy_Op` without the underscore. This is needed to make sure
that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenCopyOp`.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 19:12:37 +05:30
Vigilans 63fb1e5aad Bump LLVM at 8361c5da30588d3d4a48eae648f53be1feb5cfad 2022-03-18 13:16:14 -04:00
Sean Silva 3b66b4925a Make TorchOps.cpp faster to iterate on.
The ODS-generated code included via the `TorchOps.cpp.inc` file takes a
very long time to compile. This PR isolates it into its own file so that
the build system can cache it.

This PR creates a new file `TorchOpsODSGenerated.cpp` just to include
the `TorchOps.cpp.inc` file. Doing so required moving to the "new" way
to define verifiers, since the static `verify` free functions in
TorchOps.cpp weren't accessible from the .inc file after it was moved to
`TorchOpsODSGenerated.cpp`.

On my machine, this drops the build time of TorchOps.cpp (such as when
iterating on a canonicalizer) from >40 seconds to <10 seconds.
10 seconds still isn't great though, but at least it isn't "go get a
coffee" type of waiting.
2022-03-16 09:33:12 -07:00
Vivek Khandelwal 3d95c3d6c9 [MLIR][TORCH] Add value tensor variant to aten::_index_put_impl_
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.

This commit also updates the `torch.bincount` op test cases.
2022-03-16 22:02:02 +05:30
Ramiro Leal-Cavazos 0bcc6d1075
Add maximize-value-semantics support for multiple non-value tensor inputs (#659)
This commit adds value semantics support for ops such as
`aten.view_as` and `aten.expand_as` that take two non-value 
tensors as input.
2022-03-15 18:13:45 -07:00
Sean Silva 92da4988f0 Improve "pseudo" op terminology.
The term "pseudo" is very vague and was getting confusing (I felt I had
to explain it in every comment referencing it). Instead, rework the
"pseudo" ops to instead be named:

- MLIR Syntax: `torch.valsem.*`
- C++ / ODS: `ValsemVariant*Op`

This makes it clear what the concept is, and avoids confusion with other
things that might be called "pseudo", since these are very specific and
should be 100% consistently named w.r.t. the non-valsem-variant ops that
they correspond to.
2022-03-15 17:57:52 -07:00
Sean Silva 7ea50a537a Avoid `using` the `torch_upstream` namespace.
This is code that we always want to treat as "foreign" and not get too
comfortable using in many functions. One way to accomplish that is to
make it a bit clunkier to use.

Also, fix Utils.cpp to match the LLVM/MLIR coding conventions (don't
define functions inside namespaces -- prefer `using` and explicit
qualification).
2022-03-15 17:24:17 -07:00
Sean Silva 84a9693006 Elide `!torch.` prefix in nested dialect types.
This leads to much more succinct types in many cases:

```
!torch.list<!torch.int>
!torch.list<int>

!torch.tuple<!torch.list<!torch.int>, !torch.list<!torch.int>>
!torch.tuple<list<int>, list<int>>

!torch.optional<!torch.list<!torch.int>>
!torch.optional<list<int>>

!torch.list<list<list<tensor>>>
!torch.list<!torch.list<!torch.list<!torch.tensor>>>
```

I would like to take this further and allow omitting the `!torch.`
prefix in all cases, but that's harder -- for example, we currently use
`FuncOp` for functions, and so I don't think we can customize the
printing there. It seems like it will be a longer road to getting that
level of customization.
2022-03-15 17:24:08 -07:00
Sean Silva a5fe0cf063 Introduce new shape library design.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.

This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.

Recommended review order:

1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
   `canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.

Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).

Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
2022-03-15 12:41:58 -07:00
Prateek Gupta 3d9ba5e525 [MLIR][TORCH] Add E2E support for aten.erf op.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2022-03-09 22:22:03 +05:30
Vivek Khandelwal 1a2a9e066f [MLIR][TORCH] Add TorchToTMTensor pass
This pass is added to lower ops, which can not be lowered
via the TorchToLinalg pass, such as `torch.bincount` op.
This pass also uses torch-mlir's TMTensor Dialect to lower the
complex ops.

Also add torch.bincount op lowering with the help of TMTensor dialect

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-08 22:52:34 +05:30
Vivek Khandelwal b2952b12dd [MLIR][TORCH] Move common helper functions to Utils.cpp
This commit moves the helper function which are common across
different torch-mlir conversion passes into a common directory
Utils.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-08 22:52:34 +05:30
Gaurav Shukla e57d3f9774 [LINALG] Fix `aten.bernoulli` op lowering
- This commit adds E2E support for `aten.rand_like` and
  `aten.bernoulli_.Tensor` ops.
- The `aten.bernoulli(x)` was implemented as:
  `aten.bernoulli(x) = rand_like(x) < 0.5`, assuming 0.5 as default
  probability, whereas according to the pytorch documentation:
  https://pytorch.org/docs/stable/generated/torch.bernoulli.html#torch.bernoulli
  the input x in `aten.bernoulli(x)` is itself a tensor containing
  probabilities to be used for drawing the binary random number.
- So this commit fixes the `aten.bernoulli(x)` implementation as:
  `aten.bernoulli(x) = rand_like(x) < x`.
- It also fixes the case where the input to `aten.bernoulli_.float` is
  an integer tensor. In this case the input must be casted to float type
  before passing it as operand to `aten.rand_like` op.
  `aten.bernoulli_.float(x, p) = rand_like(float(x)) < p`.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-05 09:38:22 +05:30
Vivek Khandelwal af551bd9cd [MLIR][TORCH] Add E2E support for aten.full_like op
This commit decomposes `aten.full_like` op into `aten.empty_like`
and `aten.fill` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-04 21:58:23 +05:30
Vivek Khandelwal d61ae92eee [MLIR][TORCH] Add E2E support for aten.full op
This commit decomposes `aten.full` op into `aten.empty` and
`aten.fill` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-04 21:58:23 +05:30
Yi Zhang 1d285f0153 Add aten.hardtanh e2e support. 2022-03-02 12:28:06 -05:00
Prashant Kumar 819f29316f Decompose aten.silu op
Decomposition of aten.silu.op is added as silu(x) = x * sigmoid(x).
2022-03-01 23:24:19 +05:30
Vivek Khandelwal ddd45d6068 [MLIR][TORCH] Add E2E support for aten.new_zeros, aten.new_ones op
This commit adds lowering of `aten.new_zeros` and `aten.new_ones` op

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-01 22:09:47 +05:30
Ramiro Leal-Cavazos 1dba4fcbd7
[LINALG] Support for contiguous memory format in `clone` and `empty` (#628)
This commit adds support for the contiguous memory format for the ops
`AtenCloneOp` and `AtenEmptyMemoryFormatOp`.
2022-02-28 13:58:04 -08:00
Prashant Kumar 7c637eebc3 [LINALG] Decompose aten_hardswish op.
`aten.hardswish` op is decomposed into (x/6) * Relu6(x+3).
2022-02-25 21:59:27 +05:30
Gaurav Shukla 056cd2078d Revert "[LINALG] Decompose `aten.batch_norm` into `aten.native_batch_norm`"
This reverts commit 442ff4605c.
2022-02-25 15:46:55 +05:30
Ramiro Leal-Cavazos ba29d4f250
Add operand type invariant to `torch.overwrite.tensor.contents` (#606)
This commit adds the invariant to the op `torch.overwrite.tensor.contents` that
both of its operands have the same shape and size. In order to
maintain the invariant, special handling of this op is added to the
`RefineTypes` pass.
2022-02-22 11:41:46 -08:00
Prashant Kumar abbde7d439 [TORCH] The torch definition related to aten.gelu has changed.
New str argument approximation is added.
2022-02-18 21:57:46 +05:30
Nirvedh f8cb32faf0 LLVM bump
Major changes: opTrait changed to Trait, selectOp moved to arith dialect
assertOp moved to cf dialect
2022-02-16 15:28:13 -05:00
Gaurav Shukla 442ff4605c [LINALG] Decompose `aten.batch_norm` into `aten.native_batch_norm`
- This commit decomposes the `aten.batch_norm` op into the
  `aten.native_batch_norm` op, instead of lowering it to the
  `linalg.generic` op.
- It also adds run-time asserts in the `aten.native_batch_norm` lowering
  to make sure that the shape of the weight, bias, running_mean, and
  running_var must match the num of features.
- Since the `aten.native_batch_norm` op is not supported at TOSA backend,
  all the modules that are dependent on the `aten.native_batch_norm` op
  will fail and therefore they should be removed from the TOSA `passing`
  set.
- It also moves `checkNotNone` to utility.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-16 23:41:38 +05:30
Gaurav Shukla cd21dda867 [LINALG] Add E2E support for `aten.Hardsigmoid` op
This commit adds lowering of `aten.Hardsigmoid` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-16 02:35:18 +05:30
Ramiro Leal-Cavazos 00a6e9c1bb
[LINALG] Add value tensor variant to `fill_.Scalar` (#600)
This commit adds the op `PseudoAtenFillScalarOp` that represents
`AtenFill_ScalarOp` without the underscore. The approach is the same
as in commit dd998fa4d4.

Adding this op allows for a simpler and more consistent version of the
`empty` and `empty_like` op e2e tests.
2022-02-15 11:58:03 -08:00
Gaurav Shukla 41acde599b [LINALG] Add E2E support for `aten.[le|ge].Scalar` ops
- This commit adds lowering of `aten.le.Scalar` and `aten.ge.Scalar` ops
  as a part of `convert-torch-to-linalg` pass.
- It also creates a new test script `elementwise_comparison.py` for all
  element-wise comparison ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-15 12:21:09 +05:30
Ramiro Leal-Cavazos 413e6000d2
[LINALG] Add value tensor variant to `bernoulli_.float` (#597)
This commit adds the op `PseudoAtenBernoulliFloatOp` that represents
`AtenBernoulli_FloatOp` without the underscore. This is needed to make
sure that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value semantics
correctly.
2022-02-14 18:58:48 -08:00
Gaurav Shukla f00d1686c8 [LINALG] Add E2E support for `aten.[Bool.Tensor|Float.Tensor]` op
- This commit adds lowering of `aten.Bool.Tensor` and
  `aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
  input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
  `aten.Float.Tensor` op, it folds to the scalar number.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-14 23:09:20 +05:30
Yi Zhang 9e7b6cab08 Add folder for aten.gt/lt.float 2022-02-14 12:34:01 -05:00
Prashant Kumar 258660deb6 Add aten.bernoulli decomposition.
aten.bernoulli is decomposed to aten.gtTensor(aten.uniform(x), x).
2022-02-11 00:35:33 +05:30
Prashant Kumar 102c497c4c Add decomposition of _log_softmax op.
Decompose _log_softmax into log(softmax(x)).
2022-02-10 23:17:26 +05:30
Prateek Gupta 318946a650 [TORCH][MLIR] Add E2E support for `aten._unsafe_view` op.
This commit adds decomposition of `aten._unsafe_view` op into
`aten.view` op.

Signed-Off-By: Prateek Gupta<prateek@nod-labs.com>
2022-02-10 22:28:58 +05:30
Ramiro Leal-Cavazos 9b89f8eb3f
[TORCH][MLIR] Add E2E support for aten.clone (#571)
This commit adds support for the aten.clone op.
2022-02-09 19:31:03 -08:00
Gaurav Shukla bd177bdfc7 [TORCH][MLIR] Add run-time assert support in Torch-dialect
- This commit adds `aten.assert` op in the Torch dialect.
- The `aten.assert` op is lowered to `mlir::Assert` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-09 12:03:01 -05:00
Gaurav Shukla 2fefe68ffd [TORCH][MLIR] Add E2E support for `aten.native_batch_norm` op
- This commit adds support for `aten.native_batch_norm` operation.
- The current implementation only supports inference mode of
  `aten.native_batch_norm` op.

Signed-Off-By: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-08 02:54:03 +05:30
Prashant Kumar ccf546f14c Add aten::nll_loss_backward op
The lowering of aten::nll_loss_backward op has been added
from torch to linalg dialect. The changes has been made as
a part of -torch-convert-to-linalg pass.

Signed-off-by: Prashant Kumar prashant@nod-labs.com
2022-02-04 21:57:53 +05:30
Yi Zhang 0cb216a1ad [Torch][Linalg] Add basic support for RNG
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
2022-01-31 18:56:42 -05:00
Yi Zhang 5d9a15263a [TORCH] Add aten.std e2e support 2022-01-31 15:17:49 -05:00