Addresses ~200 onnx model compile failures in
<https://github.com/nod-ai/SHARK-TestSuite> related to
<https://github.com/iree-org/iree/issues/18631>.
This change simplifies the result of the generated broadcast op
substantially, but reduces the case coverage slightly.
The case which will become unsupported:
- trying to actually broadcast a dynamic dim that is secretly 1.
When does this case appear in practical scenarios?
- for a model where onnx shape inference cannot figure out that a dim
should be 1.
Why do I think we should not support this case for now?
1. For all models with dynamic dim expand ops, the previous path
uniformly generates uglier linalg IR (making it harder for IREE to fuse
properly with other ops).
2. For models failing shape inference castastrophically enough to fail
to see a dim is statically 1, we can try to apply constant folding in
the onnx model before importing.
Leaving this as a draft PR, since it may be more appropriate to fix the
compilation failure in IREE rather than torch-mlir.
### Example of broadcast required in previous path:
```mlir
%300 = linalg.generic {indexing_maps = [#map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} outs(%299 : tensor<?x12x?x?xi1>) {
^bb0(%out: i1):
%306 = linalg.index 0 : index
%307 = linalg.index 3 : index
%308 = arith.index_cast %285 : i64 to index
%309 = arith.cmpi eq, %308, %c1 : index
%310 = arith.select %309, %c0, %306 : index
%311 = arith.index_cast %286 : i64 to index
%312 = arith.cmpi eq, %311, %c1 : index
%313 = arith.select %312, %c0, %307 : index
%extracted_79 = tensor.extract %reshape_78[%310, %c0, %c0, %313] : tensor<?x1x1x?xi1>
linalg.yield %extracted_79 : i1
} -> tensor<?x12x?x?xi1>
```
### Example of broadcast with simplified shape list:
```mlir
%409 = linalg.generic {indexing_maps = [#map15, #map11], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%reshape_135 : tensor<?x1x1x?xi1>) outs(%408 : tensor<?x12x?x?xi1>) {
^bb0(%in: i1, %out: i1):
linalg.yield %in : i1
} -> tensor<?x12x?x?xi1>
```
Previously, if the value was absent, this conversion was creating a
dense resource of value 0 with shape equal to the result shape, then
later re-extracting a splat value. This only works if the shape is
statically known, and even when the shape is known, this is completely
unnecessary since the value's shape should be `[1]` and not the result
shape.
This patch simply sets the `splatvalue` to a `torch.constant.float 0.0`
when the onnx op's `value` attr is absent, and adds `nullptr` checks to
the subsequent conditionals to avoid them in the case where an `attr` is
not given.
Addresses <https://github.com/nod-ai/SHARK-Turbine/issues/831>.
This commit extends the OnnxToTorch lowering for BatchNormalization op
for supporting the case when training=True.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This patch adds a few misc pad op related changes:
1. Addresses issue <https://github.com/llvm/torch-mlir/issues/3457>
2. Addresses issue <https://github.com/llvm/torch-mlir/issues/3442>
3. Fixes the padding order for asymmetrically padded onnx.Conv ops
4. Enables passing quantization through those onnx.Conv op pre-paddings
5. Modifies the torch-to-linalg lowering of AtenReplicationPad2d op to
enable support for input rank != 4
Unfortunately, even with all of these changes, the e2e tests for the
ReplicationPad2d still fail the onnx config, since the torch export
procedure for rearranging the pad order is complicated enough that the
padding ints end up not being able to fold back to constants.
This adds support for a few ops:
- torch.linalg_det
- torch._linalg_det (if the LU and pivot returns are unused)
- onnx.Det
An scf loop is used, since the row reduction algorithm applied here has
some loop-carried dependencies.
The current support being added here is very basic, and only works if no
permutations are required during row reduction, and assumes the matrices
are non-singular.
This adds a torchvision op to torch-mlir and a path from onnx.DeformConv
to torchvision.deform_conv2d.
I'm not implementing the torch->linalg lowering for the torchvision op
yet, but posting this PR to get feedback on some of the choices being
made here and to flesh out the onnx frontend a bit.
Issues was found here https://github.com/nod-ai/SHARK-Turbine/issues/643
- [ONNX] Fix padding attributes for onnx.AveragePool
- [Linalg] Add countIncludePad false support for AtenAvgPool1/2dOp
- [Linalg] Add an avg_pool2d countIncludePad False e2e tests
- [Linalg] Fix conflict with AtenAvgPool3dOp
- [Linalg] Fix e2e crash with AtenAvgPool1dOp
- [Linalg] Add dynamic dim support for AtenAvgPool2dOp
- [Linalg] Fix AvgPool2dDivisorOverrideModule crash
There is currently no int16 quantization support in torch. This patch
adds a new mlir type to correspond to the missing "torch.qint16" type,
and enables lowering of quantization-related onnx ops using int16 types.
In follow-up patches, custom quantization logic for ops like
aten.matmul/aten.mm/aten.convolution may need to be revisited to allow
support for qint16. The passes in FuseQuantizedOps.cpp may also need
slight modifications.
Supports asymmetric padding by performing a torch.nn.functional.pad on
the input before performing the convolution.
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
All e2e iree tests compiled, but they have the run issue of mismatch of
dtype like the following
```
expected:
1x1x2x2xsi32=[[[12 16][24 28]]]
actual:
1x1x2x2xi32=[[[12 16][24 28]]]
```
See the related issues here:
[SHARK-Turbine#556](https://github.com/nod-ai/SHARK-Turbine/issues/556)
1. Adds uint8 casting to onnx.Cast op
2. Fixes an issue with onnx.DequantizeLinear when the scale comes with
shape [1].
3. Adds support for unsigned types in an AtenItemOp folder
4. Adds a simpler quantized model for easier debugging
5. Adds a fusion pass to convert [quant -> dequant -> transpose -> mm]
patterns to [transpose -> quant -> mm].
6. Moved some xfails that are still not passing, but for different
reasons than onnx.cast failures.
This adds support for converting DynamicQuantizeLinear from torch-onnx
to torch.
I could not get an e2e test to pass, since there seems to be some issues
with uint8 casting somewhere lower in the pipeline. For example
compiling with IREE for llvm-cpu, I would get either the correct zero
point (if zp < 128) or the correct zero-point minus 256 (if zp >= 128).
The output tensor seems to always return a tensor of zeros, which also
occurs when running uint8 examples through QuantizeLinear.
Edit: the first problem can be resolved by casting the output back to
uint8 on output, the second problem is resolved with PR #3018
The only difference between version 7 and newer versions is support for
different data types. We should allow this pattern to match as early as
7. Earlier versions have a more manual broadcast specification through
attributes, so I did not include those versions.
See: [onnx.Div
docs](https://onnx.ai/onnx/operators/onnx__Div.html#l-onnx-doc-divl)
If the broadcast shape is length-1 at a dim while `?` in the input dim
then we need to broadcast to the dynamic dim. This is equivalent to
taking a max of two dimensions.