Commit Graph

401 Commits (7e6d76e997f438fe5bf540eaba9e0ee069bd9f6e)

Author SHA1 Message Date
jinchen 6d0ca499e6
[ONNX] Add OnnxToTorch support for ReverseSequence (#3495) 2024-06-27 14:33:41 -07:00
Phaneesh Barwaria 39d1332008
add onnx loop support (#3408)
- Adds limited support for lowering onnx.Loop to primLoopOp
- lower in the pipeline`torch-to-scf` there is a check to see if loop is
for like. A primLoopOp is for like when the input condition is a
`trueBoolConstant`. To adapt the onnx to torch lowering to take
advantage of it, the implementation checks for specific op patterns in
the loodBody region and decides if loop is for like and uses the right
input condition op.
- to adapt the onnxLoopBody to torchLoopBody, we need to adapt the input
block arguments and set the correct output condition variable in the
loop body.
- scanOutput variables are currently not supported.
2024-06-27 17:08:44 +05:30
Matthias Gehre 6678e1a256
TorchToLinalg: Try folding shape computations to keep static shapes when possible (#3475)
Before this PR, a statically shaped aten.convolution would generate
dynamically shaped linalg IR, and even `-canonicalize` would not be able
to fold it back into static shapes. This PR ensure that shape
calculations are folded on construction to directly generate statically
shaped linalg IR.

We achieve that by ensuring that `arith` ops involved in computing
shapes are created via `createOrFold`, so that later uses of
`getAsOpFoldResult` see constants instead of those ops.

For example
```
module {
  func.func @forward(%arg0: !torch.vtensor<[32,336,112,112],f32>,
                        %arg1: !torch.vtensor<[336,168,3,3],f32>, 
                        %arg2: !torch.vtensor<[336],f32>) 
                        -> !torch.vtensor<[32,336,56,56],f32> {
    %false = torch.constant.bool false
    %int2 = torch.constant.int 2
    %int1 = torch.constant.int 1
    %0 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
    %1 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
    %2 = torch.prim.ListConstruct  : () -> !torch.list<int>
    %3 = torch.aten.convolution %arg0, %arg1, %arg2, %1, %0, %0, %false, %2, %int2 
    : !torch.vtensor<[32,336,112,112],f32>, !torch.vtensor<[336,168,3,3],f32>, !torch.vtensor<[336],f32>, !torch.list<int>,
      !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int
   -> !torch.vtensor<[32,336,56,56],f32>
    return %3 : !torch.vtensor<[32,336,56,56],f32>
  }
}
```
would result in
```
[...]
  %padded = tensor.pad %2 low[%14, %15, %16, %17] high[%14, %15, %16, %17] {
    ^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
      tensor.yield %cst : f32
    } : tensor<32x336x112x112xf32> to tensor<?x?x?x?xf32>
[...]
  %45 = linalg.conv_2d_ngchw_gfchw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>}
    ins(%expanded, %expanded_37 : tensor<?x2x?x?x?xf32>, tensor<2x168x168x3x3xf32>)
    outs(%expanded_44 : tensor<32x2x168x?x?xf32>) -> tensor<32x2x168x?x?xf32>
[...]
```
and with this PR all shapes are static.
2024-06-27 08:43:10 +02:00
Suraj Sudhir 6eebe61bfe
[Tosa] Conversion from torch.__interpolate to tosa.resize() (#3488)
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2024-06-26 09:10:14 -07:00
zjgarvey 368fabf0c1
[ONNX] Basic Support for DeformConv (#3469)
This adds a torchvision op to torch-mlir and a path from onnx.DeformConv
to torchvision.deform_conv2d.

I'm not implementing the torch->linalg lowering for the torchvision op
yet, but posting this PR to get feedback on some of the choices being
made here and to flesh out the onnx frontend a bit.
2024-06-25 12:16:51 -05:00
zjgarvey e346c911f7
[ONNX] Add basic support for RoiAlign (#3493)
This adds an onnx->torch conversion for onnx.RoiAlign into
torchvision.roi_align or torchvision.roi_pool, and adds those two
torchvision ops to torch-mlir.
2024-06-25 11:02:45 -05:00
Vinayak Dev 02340408b7
[torch] Add OnnxToTorch lowering for Onnx.STFT op (#3492)
Adds OnnxToTorch lowering for `Onnx.STFT` op.
2024-06-25 19:00:45 +05:30
Vivek Khandelwal 3c3fbe4680
[ONNX] Add OnnxToTorch lowering for Onnx.Upsample Op (#3371)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-25 12:58:31 +05:30
Vivek Khandelwal 83bfb6fb19
[ONNX] Add OnnxToTorch lowering for OptionalHasElement op (#3472)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-21 11:19:00 +05:30
Vivek Khandelwal d29ad4dfbd
[ONNX] Fix Onnx.Hardsigmoid lowering (#3239)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-21 11:18:14 +05:30
zjgarvey 694210f429
[TorchToLinalg] Fix Quantized Convolution Accumulator Type (#3459)
1. truncates zero-points to i32
2. modifies the default accumulator type for i8 from i64 to i32. 
3. now uses the input dtype to infer accumulator dtype.
2024-06-20 13:54:20 -07:00
Peiming Liu ba16bad8c7
[torch-mlir] bump stablehlo/llvm version (#3471)
Update to llvm/llvm-project@5207632f86
Update to openxla/stablehlo@d41390c3a7
2024-06-18 16:59:53 -07:00
Vivek Khandelwal 822d763308
[ONNX] Add OnnxToTorch lowering for Optional, OptionalGetElement op (#3467)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-18 19:40:18 +05:30
Umang Yadav 59bade3376
[ONNX] Add missing "Abs" in GlobalLpPool (#3460)
Taking `abs` is required to mimic same logic as onnx/onnxruntime. 
Without `abs`, it wouldn't produce correct results for negative values. 

Reference code : 

f5b6f6dc26/onnxruntime/core/providers/cpu/nn/pool_functors.h (L604)


375c161c67/onnx/reference/ops/op_lp_pool.py (L31)
2024-06-17 11:17:16 +05:30
Manupa Karunaratne d2b663ece7
Add onnx op LRN lowering (#3432)
This commit adds support for lowering
Onnx LRN op to aten.
2024-06-14 16:44:43 +00:00
Arham Khan 09c988046c
[ONNX] Add OnnxToTorch lowering for Onnx.NegativeLogLikelihoodLoss Op (#3380)
This implements the Onnx.NegativeLogLikelihoodLoss op using the
signature provided
[here](https://onnx.ai/onnx/operators/onnx__NegativeLogLikelihoodLoss.html)
by replacing it with a `NLLLossForward` op.

Additionally, I included a helper function `get_loss_reduction_enum` to
convert from a string `reduction` parameter to the corresponding
intended integer value since this is an operation that will be reused
for any loss function module. This differs from `get_reduction_enum` in
`TorchUpstream.cpp` which handles the `reduce` parameter from
`scatter_reduce` type operations.
2024-06-14 22:01:11 +05:30
Vivek Khandelwal 2ea2bc3948
[ONNX] Add OnnxToTorch Lowering for GroupNormalization op (#3458)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-14 16:18:53 +00:00
Umang Yadav 04c6479350
[ONNX] Add onnx parser for LpPool operator (#3449)
Similar to https://github.com/llvm/torch-mlir/pull/3435

Solves https://github.com/nod-ai/SHARK-Turbine/issues/728
2024-06-14 21:41:18 +05:30
Vinayak Dev 39d882f7c9
[torch] Add OnnxToTorch lowering for the Col2Im op (#3424)
Adds OnnxToTorch lowering for the `onnx.Col2Im` op.
2024-06-13 08:42:06 +00:00
Surya Jasper de7f058a0e
[MLIR][ONNX] Add OnnxToTorch support for MaxRoiPool Op (#3395)
This PR adds OnnxToTorch support for MaxRoiPool op
2024-06-13 10:46:14 +05:30
Umang Yadav 9b76a2e3eb
[ONNX] add onnx lowering for global lp pool operator (#3435)
Solves https://github.com/nod-ai/SHARK-Turbine/issues/727

Uses AvgPool to implement GlobalLpPool similar to this
https://github.com/onnx/onnx/blob/main/onnx/reference/ops/op_lp_pool.py

cc: @vivekkhandelwal1
2024-06-13 10:37:08 +05:30
zjgarvey de28c8540b
[ONNX] add int16 quantization support (#3446)
There is currently no int16 quantization support in torch. This patch
adds a new mlir type to correspond to the missing "torch.qint16" type,
and enables lowering of quantization-related onnx ops using int16 types.

In follow-up patches, custom quantization logic for ops like
aten.matmul/aten.mm/aten.convolution may need to be revisited to allow
support for qint16. The passes in FuseQuantizedOps.cpp may also need
slight modifications.
2024-06-12 10:37:22 +05:30
zjgarvey 7cd3368b20
[ONNX] Fix resize ceil numerics and add half_pixel_symmetric support (#3443)
This patch fixes several failing tests in our [external test
suite](https://github.com/nod-ai/SHARK-TestSuite/tree/main/iree_tests/onnx/node/generated),
and addresses some of the issues discussed in #3420
2024-06-11 22:35:50 -05:00
Matthias Gehre e07a0bfc54
onnx.resize: Add support for coordTfMode "half_pixel" (#3441)
half_pixel is also the default mode used by ONNX, see
https://onnx.ai/onnx/operators/onnx__Resize.html
2024-06-10 20:59:29 +02:00
Vivek Khandelwal d35b6b412a
[ONNX] Add OnnxToTorch Lowering for Sequence Ops (#3425)
This commit adds the lowering for SequenceAt, SequenceEmpty,
SequenceInsert, SequenceErase op

Signed-Off By: Vivek Khandelwal<vivekkhandelwal1424@gmail.com>
2024-06-08 09:58:11 +05:30
aldesilv f794582b18
add resize nearest mode round_prefer_floor, round_prefer_ceil, ceil (#3421) 2024-06-07 14:04:11 -05:00
Vivek Khandelwal 1a9c0a35a9
[Onnx] Add Onnx->Torch lowering for Onnx.Shrink Op (#3385)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-07 22:47:27 +05:30
Suraj Sudhir 1c2778dd56
[ONNX] Conv op adds support for asymmetric padding. (#3426)
Supports asymmetric padding by performing a torch.nn.functional.pad on
the input before performing the convolution.

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2024-06-07 09:54:39 -07:00
Vivek Khandelwal 35dd8c52cd
[ONNX] Add OnnxToTorch Lowering for MaxUnpool op (#3413)
This commit also adds the Torch declaration for aten.max_unpool2d and
aten.max_unpool3d op. The TorchToLinalg lowering for the same will be
added in a follow-up commit.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-04 21:09:53 +05:30
Xida Ren (Cedar) 11c3281a8a
Fix reducesum onnx lit test to linalg lowering fails (#3218)
fixes https://github.com/nod-ai/SHARK-Turbine/issues/653

---------

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-06-03 16:36:09 -04:00
Vivek Khandelwal 6382dbbcc0
[ONNX] Add OnnxToTorch lowering for SpaceToDepth op (#3393)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-03 20:29:39 +05:30
Surya Jasper fc100a117d
[MLIR][ONNX] Add OnnxToTorch support for Scatter Op (#3400)
This PR adds OnnxToTorch support for Scatter op
2024-05-31 07:36:48 +00:00
zjgarvey 074098d20c
Modifies onnx resize lowering to fix numerical issues (#3381)
Updates:

- some unsupported modes are now going to report a match failure for
unsupported coordinate transformation modes.
- fixes a bug that was introduced in the last patch for resize (my
bad...)
- uses actual x and y coordinates for computing weights in bilinear
interpolation (rather than eps modified values)
- slightly simplifies the bilinear interpolation payload for readability
and performance
- passes coordinate transformation mode information from an onnx.Resize
op to the mode string for the aten._interpolate op. This allows us to
perform custom logic in the torch->linalg lowering to support
onnx.Resize options without losing the default behaviors of the
interpolate op.
2024-05-30 20:34:37 -04:00
Vivek Khandelwal d7b8f00d01
[ONNX] Add OnnxToTorch Lowering for LpNormalization op (#3397)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-05-30 23:05:26 +05:30
Angel Zhang 2e194e13d6
[Torch] Fix bugs for `Torch::AtenOneHotOp` (#3350)
This PR fixes the bugs for `Torch::AtenOneHotOp` by:

1) Using `Torch::kUnknownSize` as the default value for `numClasses` in
   the pattern matching stage in `DecomposeAtenOneHotOp`
2) Adding `AtenIntScalarOp` to the patterns in `TorchToArith`
3) Handling both `int` and `float` types for `off` and `on` values in
`TorchOnnxToTorch` conversion

It also includes:

1) A new test in `TorchToArith/basic.mlir`, for `torch.aten.Int.Scalar`,
and
2) A new test in `decompose-complex-ops.mlir`, for `torch.aten.one_hot`

**Dependencies**

This PR is dependent on #3334.
2024-05-22 17:19:08 +00:00
Yuanqiang Liu f4bfe3f948
Bump llvm and stablehlo (#3377)
* bump llvm to 1e5f29af81a5f6fda308074f6345b9fba4faa71c
* bump stablehlo to c44d9af8d4879adccf1054cb61a53377ae5898cb
2024-05-22 23:28:45 +08:00
Angel Zhang 52be4bdc18
[ONNX] Fix bugs for the `onnx.OneHot` operator (#3334)
This commit fixes the bugs for the `onnx.OneHot` operator by:

1) Converting negative indices to non-negative indices
2) Handling both `int` and `float` types for `off` and `on` values
3) Using the correct result type

It also includes a new unit test.
2024-05-22 08:32:00 -04:00
RattataKing fcf48872b3
[ONNX] Implement Softsign op (#3373) 2024-05-21 12:10:26 -07:00
zjgarvey 297c270980
onnx.Resize and aten._interpolate : allow n spatial dims. (#3368)
The old lowering only had logic for 2d (i.e. images). this patch allows
interpolation for n spatial dims, which is required for some 3d vision
models such as

- onnx/models/pytorch-3dunet_vaiq_int8

which successfully compiles and runs with this patch.
2024-05-20 13:35:27 -07:00
lialan 99511cef82
Implement `onnx.Hardmax` lowering (#3342)
Co-authored-by: Ubuntu <xunli@wsno1.judsoscro3wupi0qm4bjlj5m3b.bx.internal.cloudapp.net>
Co-authored-by: Hasekawa-Takumi <bewater.private476@passmail.net>
2024-05-20 20:56:24 +05:30
Wu Yuan cc28d566ff
[Stablehlo] Support AtenTrilOp (#3359)
1. lower aten.tril to stablehlo composed by iota, select and so forth
2. add related e2e test cases
2024-05-20 15:49:24 +08:00
zjgarvey 6cba93b16e
[ONNX][TorchToLinalg] Add support for dynamic dims in Interpolate lowering (#3351)
Addresses [Shark-Turbine
#196](https://github.com/nod-ai/SHARK-TestSuite/issues/196)

Related tracker [Shark-Turbine
#566](https://github.com/nod-ai/SHARK-Turbine/issues/566)

Related onnx.Resize issues [Shark-Turbine
#616](https://github.com/nod-ai/SHARK-Turbine/issues/616)
2024-05-17 12:18:57 -07:00
Andrew Woloszyn 513d89c16d
Add support for the onnx.SequenceLength op. (#3362) 2024-05-17 12:17:43 -07:00
Andrew Woloszyn 72e38dcbbc
Add support for the onnx.SequenceConstruct op. (#3316) 2024-05-17 22:51:28 +05:30
NeverRaR 26b78285bf
[MLIR][ONNX] Add OnnxToTorch support for GlobalMaxPool Op (#3232)
https://github.com/nod-ai/SHARK-Turbine/issues/658

---------

Co-authored-by: root <root@i32b01216.sqa.eu95>
2024-05-14 15:55:39 +05:30
Archana Ramalingam 20f312853c
[MLIR][ONNX] Add OnnxToTorch support for ReduceLogSumExp Op (#3201)
This commit adds the OnnxToTorch support for ReduceLogSumExp op
2024-05-14 09:54:26 +05:30
Yuanqiang Liu 0b7cbf5e60
[Stablehlo] fix aten.randn's lowering with f32 element type (#3329) 2024-05-11 17:40:04 +08:00
Yuanqiang Liu 5f7cb9e253
[Stablehlo] lowering aten.randn & aten.normal_functional to mhlo.rng … (#3328)
…NORMAL

* split lowering of uniform, randn, normal from Basic.cpp into Rng.cpp
2024-05-11 15:33:37 +08:00
Stella Laurenzo 00efec0b73
[linalg] Implement strict mode lowering for aten.view. (#3319)
* Enables assume_strict_symbolic_shapes on fx_importer imported
programs, indicating strict shape semantics.
* Reworks the view->reshape lowering to take advantage of strict mode
and do one of:
  * Collapse to 0D
  * Flatten/Unflatten when there is an inferred dim.
  * Fallback to tensor.reshape
* Splits some test cases up and adds an attribute to control the old
pattern (so new corners can be tested in strict mode in isolation).
* Dynamic inferred mode needs upstream work to generalize expand_shape
(so that case is suppressed here).
* Deletes the assert from the existing tensor.reshape lowering if strict
shape mode is enabled (since the condition it is dynamically asserting
cannot happen).
2024-05-10 13:45:50 -07:00
Andreas Falkenberg adafd51823
[onnx] Gridsampler addition of nearest mode (#3320)
Added nearest neighbor selection for onnx.Gridsampler
2024-05-10 11:42:10 -07:00